论文标题
可变动态模式分解用于估计核系统中时间特征值
Variable Dynamic Mode Decomposition for Estimating Time Eigenvalues in Nuclear Systems
论文作者
论文摘要
我们提出了一种通过扩展动态模式分解(DMD)来计算中子传输运算符(也称为$α$ eigenvalues)的新方法,以实现不均匀的时间步。当计算由于时间尺度上较大的分离(例如,在延迟的超临界系统中发生的较大的分离),称为变量动态模式分解(VDMD)的新方法被证明是准确的。无限中子中子中子的无限中子传输问题的$α$特征值,因此计算了多个相关时间尺度的多个相关时间尺度。此外,在使用可以使用先前研究的DMD方法的其他系统中计算特征值时,VDMD与原始DMD方法的精度相似。
We present a new approach to calculating time eigenvalues of the neutron transport operator (also known as $α$ eigenvalues) by extending the dynamic mode decomposition (DMD) to allow for non-uniform time steps. The new method, called variable dynamic mode decomposition (VDMD), is shown to be accurate when computing eigenvalues for systems that were infeasible with DMD due to a large separation in time scales (such as those that occur in delayed supercritical systems). The $α$ eigenvalues of an infinite medium neutron transport problem with delayed neutrons and consequently having multiple, very different relevant time scales are computed. Furthermore, VDMD is shown to be of similar accuracy to the original DMD approach when computing eigenvalues in other systems where the previously studied DMD approach can be used.