论文标题
比林蒙德的更广阔视野
Broader view of bimetric MOND
论文作者
论文摘要
Bimetric Mond(Bimond)的所有现有治疗方法(MOND的一类相对论版本)都处理了一个相当受限制的子类别:两个指标引力程度之间的相互作用的Lagrangian(两个指标 - 是两个指标)的函数的函数。我表明Bimond的范围要丰富得多:两个指标可以通过几个标量进行逐步,以使所有人都具有“良好”的非层状(NR)限制 - 一个正确说明了银河系系统动力学的a-la mond,{\ \ crestic prestic prestication}。这个扩展的边缘框架与我们目前对蒙德的看法表现出了定性的出现,如在其各个方面所封装的,通过一个加速变量的一个“插值函数”。得出通用场方程后,我指出了满足良好NR限制关键要求的理论的子类。这些涉及三个独立的二次标量变量。在NR中,这些标量都将这些标量降低到相同的加速度标量,然后NR理论确实取决于一个{\ it单个}加速变量的一个函数 - 代表NR mond“插值函数”,其形式在很大程度上由观察到的NR分离式动力学决定。但是,这些标量在不同的相对论环境中的行为有所不同。因此,例如,我们从银河系动力学的观察中学到的知识,几乎没有理解多变量的拉格朗日人的全部丰富性。在本文中,我以一些通用的例子介绍了形式主义。我还考虑了一些宇宙学解决方案,其中两个指标与弗里德曼·罗伯森 - 罗伯逊·沃克指标相比很小。这可能提供了一个描述扩展Bimond中宇宙学的框架。
All existing treatments of bimetric MOND (BIMOND) -- a class of relativistic versions of MOND -- have dealt with a rather restricted sub-class: The Lagrangian of the interaction between the gravitational degrees of freedom -- the two metrics -- is a function of a certain {\it single} scalar argument built from the difference in connections of the two metrics. I show that the scope of BIMOND is much richer: The two metrics can couple through several scalars to give theories that all have a "good" nonrelativistic (NR) limit -- one that accounts correctly, a-la MOND, for the dynamics of galactic systems, {\it including gravitational lensing}. This extended-BIMOND framework exhibits a qualitative departure from the way we think of MOND at present, as encapsulated, in all its aspects, by one "interpolating function" of one acceleration variable. After deriving the general field equations, I pinpoint the subclass of theories that satisfy the pivotal requirement of a good NR limit. These involve three independent, quadratic scalar variables. In the NR limit these scalars all reduce to the same acceleration scalar, and the NR theory then does hinge on one function of a {\it a single} acceleration variable -- representing the NR MOND "interpolating function", whose form is largely dictated by the observed NR galactic dynamics. However, these scalars behave differently, in different relativistic contexts. So, the full richness of the multi-variable Lagrangian, as it enters cosmology, for example, is hardly informed by what we learn from observations of galactic dynamics. In this paper, I present the formalism, with some generic examples. I also consider some cosmological solutions where the two metrics are small departures from one Friedman-Lemaitre-Robertson-Walker metric. This may offer a framework for describing cosmology within the extended BIMOND.