论文标题

使用分布式大量MIMO-OFDM通信系统:原型和分析的无接触性多目标跟踪

Contact-Free Multi-Target Tracking Using Distributed Massive MIMO-OFDM Communication System: Prototype and Analysis

论文作者

Li, Chenglong, De Bast, Sibren, Miao, Yang, Tanghe, Emmeric, Pollin, Sofie, Joseph, Wout

论文摘要

基于无线的人类活动识别已成为一项必不可少的技术,它可以实现无接触的人机和人类环境相互作用。在本文中,我们考虑基于可用通信系统的无接触性多目标跟踪(MTT)。雷达的原型构建在低下的6 GHz分布式大量多输入和多输出(MIMO)正交频划分多路复用通信系统上。具体而言,在用于跟踪之前,在频率和天线域中对原始通道状态信息(CSI)进行校准。然后提取从移动的行人中反射或散射的目标CSI。为了逃避分布式大规模MIMO MTT的复杂关联问题,我们建议使用复杂的贝叶斯压缩感(CBCS)算法,以直接基于提取的利益CSI信号来估计目标的位置。从CBCS的估计位置被馈送到用于跟踪的高斯混合物概率假设密度过滤器。在一个大小为6.5 m $ \ times $ 10 m的房间内进行了多层次的跟踪实验,以评估所提出的算法的性能。根据实验结果,单人跟踪的第75%和第95%的精度为12.7 cm和18.2 cm,分别用于28.9 cm和45.7 cm的多人跟踪。此外,拟议的算法实时实现了跟踪目的,这对于实际MTT用例而言是有希望的。

Wireless-based human activity recognition has become an essential technology that enables contact-free human-machine and human-environment interactions. In this paper, we consider contact-free multi-target tracking (MTT) based on available communication systems. A radar-like prototype is built upon a sub-6 GHz distributed massive multiple-input and multiple-output (MIMO) orthogonal frequency-division multiplexing communication system. Specifically, the raw channel state information (CSI) is calibrated in the frequency and antenna domain before being used for tracking. Then the targeted CSIs reflected or scattered from the moving pedestrians are extracted. To evade the complex association problem of distributed massive MIMO-based MTT, we propose to use a complex Bayesian compressive sensing (CBCS) algorithm to estimate the targets' locations based on the extracted target-of-interest CSI signal directly. The estimated locations from CBCS are fed to a Gaussian mixture probability hypothesis density filter for tracking. A multi-pedestrian tracking experiment is conducted in a room with size of 6.5 m$\times$10 m to evaluate the performance of the proposed algorithm. According to experimental results, we achieve 75th and 95th percentile accuracy of 12.7 cm and 18.2 cm for single-person tracking and 28.9 cm and 45.7 cm for multi-person tracking, respectively. Furthermore, the proposed algorithm achieves the tracking purposes in real-time, which is promising for practical MTT use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源