论文标题
部分可观测时空混沌系统的无模型预测
Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, the zero-free regions in the Riemann zeta function start from functional equations. In this paper, we prove a functional equations of the Barnes double zeta-function $ ζ_2 (s, α; v, w ) = \sum_{m=0}^\infty \sum_{n=0}^\infty (α+vm+wn)^{-s} $. Also, applying this functional equation and the Phragmén-Lindelöf convexity principle, we obtain some upper bounds for $ ζ_2(σ+ it, α; v, w) \ (0\leq σ\leq 2) $ with respect to $ t $ as $ t \rightarrow \infty $.