论文标题
基于骨架的动作识别的分层分解图形卷积网络
Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
论文作者
论文摘要
图形卷积网络(GCN)是基于骨架的动作识别的最常用方法,并取得了出色的性能。生成具有语义上有意义的边缘的邻接矩阵对于此任务尤其重要,但是提取此类边缘是具有挑战性的问题。为了解决这个问题,我们提出了一个具有新颖的分层分解图(HD-GRAPH)的层次分解图卷积网络(HD-GCN)结构。提出的HD-GCN有效地将每个关节节点分解为几组,以提取主要的结构相邻和遥远的边缘,并使用它们来构造在人类骨骼相同语义空间中包含这些边缘的HD-graph。此外,我们引入了一个注意引导的层次结构聚合(A-HA)模块,以突出HD图的主要分层边缘集。此外,我们采用了一种新的六向整体方法,该方法仅使用无运动流的关节和骨流。评估了所提出的模型,并在四个大型流行数据集上实现最先进的性能。最后,我们通过各种比较实验证明了模型的有效性。
Graph convolutional networks (GCNs) are the most commonly used methods for skeleton-based action recognition and have achieved remarkable performance. Generating adjacency matrices with semantically meaningful edges is particularly important for this task, but extracting such edges is challenging problem. To solve this, we propose a hierarchically decomposed graph convolutional network (HD-GCN) architecture with a novel hierarchically decomposed graph (HD-Graph). The proposed HD-GCN effectively decomposes every joint node into several sets to extract major structurally adjacent and distant edges, and uses them to construct an HD-Graph containing those edges in the same semantic spaces of a human skeleton. In addition, we introduce an attention-guided hierarchy aggregation (A-HA) module to highlight the dominant hierarchical edge sets of the HD-Graph. Furthermore, we apply a new six-way ensemble method, which uses only joint and bone stream without any motion stream. The proposed model is evaluated and achieves state-of-the-art performance on four large, popular datasets. Finally, we demonstrate the effectiveness of our model with various comparative experiments.