论文标题

阈值自适应无监督的局部损失,用于语义分割的域适应

Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of Semantic Segmentation

论文作者

Yan, Weihao, Qian, Yeqiang, Wang, Chunxiang, Yang, Ming

论文摘要

语义细分是智能车辆了解环境的重要任务。当前的深度学习方法需要大量的标记数据进行培训。手动注释很昂贵,而模拟器可以提供准确的注释。但是,在实际场景中应用时,使用模拟器数据训练的语义分割模型的性能将大大降低。无监督的域适应性(UDA)用于语义分割,最近引起了越来越多的研究注意力,旨在减少域间隙并改善目标域的性能。在本文中,我们提出了一种新型的基于两阶段熵的UDA方法,用于语义分割。在第一阶段,我们设计了一个阈值适应的无监督局灶性局部损失,以使目标域中的预测正常,该预测具有轻度的梯度中和机制,并减轻了在基于熵的方法中几乎无法优化硬样品的问题。在第二阶段,我们引入了一种名为跨域图像混合(CIM)的数据增强方法,以弥合两个域的语义知识。我们的方法在合成景观和gta5-to-cityscapes上,使用DeepLabV2和使用轻量级的BisEnet实现了最新的58.4%和59.6%的MIOS和59.6%。

Semantic segmentation is an important task for intelligent vehicles to understand the environment. Current deep learning methods require large amounts of labeled data for training. Manual annotation is expensive, while simulators can provide accurate annotations. However, the performance of the semantic segmentation model trained with the data of the simulator will significantly decrease when applied in the actual scene. Unsupervised domain adaptation (UDA) for semantic segmentation has recently gained increasing research attention, aiming to reduce the domain gap and improve the performance on the target domain. In this paper, we propose a novel two-stage entropy-based UDA method for semantic segmentation. In stage one, we design a threshold-adaptative unsupervised focal loss to regularize the prediction in the target domain, which has a mild gradient neutralization mechanism and mitigates the problem that hard samples are barely optimized in entropy-based methods. In stage two, we introduce a data augmentation method named cross-domain image mixing (CIM) to bridge the semantic knowledge from two domains. Our method achieves state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the lightweight BiSeNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源