论文标题

CM-MLP:带有轴向上下文关系编码器的级联多尺度MLP用于医疗图像的边缘分割

CM-MLP: Cascade Multi-scale MLP with Axial Context Relation Encoder for Edge Segmentation of Medical Image

论文作者

Lv, Jinkai, Hu, Yuyong, Fu, Quanshui, Zhang, Zhiwang, Hu, Yuqiang, Lv, Lin, Yang, Guoqing, Li, Jinpeng, Zhao, Yi

论文摘要

基于卷积的方法在医疗图像分割任务中提供了良好的分割性能。但是,这些方法在处理医学图像的边缘时面临以下挑战:(1)以前的基于卷积的方法不关注分割边缘周围前景和背景之间的边界关系,当边缘复杂变化时,这会导致分割性能的退化。 (2)卷积层的电感偏置不能适应复杂的边缘变化和多分段区域的聚合,从而导致其性能改善大部分仅限于分割分段区域的主体而不是边缘。为了应对这些挑战,我们提出了MFI(多尺度特征交互)块和英亩(轴向上下文关系编码器)块上的CM-MLP框架,以准确地分割医疗图像的边缘。在MFI块中,我们建议级联多尺度MLP(Cascade MLP)同时从网络的较深层中处理所有局部信息,并利用级联多尺度机制逐渐融合离散的本地信息。然后,将英亩块用于使深度监督专注于探索前景和背景之间的边界关系以修改医疗图像的边缘。我们提出的CM-MLP框架的细分准确性(DICE)在三个基准数据集上达到96.96%,96.76%和82.54%:CVC-ClinicDB数据集,Sub-Kvasir Dataset和我们的内部数据集,分别超过了The-efter-efter-efter-efter-efter-efter-efter-efter-efter-the-art-art-art-art-art-art-art-art-art-art-art-art-art-art-art-art-art-art。源代码和训练有素的模型将在https://github.com/programmerhyy/cm-mlp上找到。

The convolutional-based methods provide good segmentation performance in the medical image segmentation task. However, those methods have the following challenges when dealing with the edges of the medical images: (1) Previous convolutional-based methods do not focus on the boundary relationship between foreground and background around the segmentation edge, which leads to the degradation of segmentation performance when the edge changes complexly. (2) The inductive bias of the convolutional layer cannot be adapted to complex edge changes and the aggregation of multiple-segmented areas, resulting in its performance improvement mostly limited to segmenting the body of segmented areas instead of the edge. To address these challenges, we propose the CM-MLP framework on MFI (Multi-scale Feature Interaction) block and ACRE (Axial Context Relation Encoder) block for accurate segmentation of the edge of medical image. In the MFI block, we propose the cascade multi-scale MLP (Cascade MLP) to process all local information from the deeper layers of the network simultaneously and utilize a cascade multi-scale mechanism to fuse discrete local information gradually. Then, the ACRE block is used to make the deep supervision focus on exploring the boundary relationship between foreground and background to modify the edge of the medical image. The segmentation accuracy (Dice) of our proposed CM-MLP framework reaches 96.96%, 96.76%, and 82.54% on three benchmark datasets: CVC-ClinicDB dataset, sub-Kvasir dataset, and our in-house dataset, respectively, which significantly outperform the state-of-the-art method. The source code and trained models will be available at https://github.com/ProgrammerHyy/CM-MLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源