论文标题

关节分位数和预期不足回归的推断

Inference for Joint Quantile and Expected Shortfall Regression

论文作者

Peng, Xiang, Wang, Huixia Judy

论文摘要

分位数和预期的短缺是金融风险管理中常用的风险措施。这两个测量值相关,同时具有出色的特征。在这个项目中,我们的主要目标是为有条件的预期不足开发稳定且实用的推理方法。为了促进统计推断程序,我们考虑了条件分位数和预期不足的关节建模。虽然可以通过最大程度地估算一类严格一致的关节损失函数来共同估算回归系数,但计算具有挑战性,尤其是当参数的尺寸较大时,由于损耗函数既不可区分,也不是凸面。为了减少计算工作,我们通过首先估计具有标准分位数回归的分位数回归参数来提出一个两步估计程序。我们表明,两步估计器具有与关节估计器相同的渐近特性,但前者在数值上更有效。我们进一步开发了用于假设检验和置信区间构建的得分型推理方法。与WALD型方法相比,该分数方法对异质性具有鲁棒性,并且在有限样本中是优越的,尤其是对于具有大量混杂因素的情况。我们通过数值研究证明了所提出的方法比现有方法的优势。

Quantiles and expected shortfalls are commonly used risk measures in financial risk management. The two measurements are correlated while have distinguished features. In this project, our primary goal is to develop stable and practical inference method for conditional expected shortfall. To facilitate the statistical inference procedure, we consider the joint modeling of conditional quantile and expected shortfall. While the regression coefficients can be estimated jointly by minimizing a class of strictly consistent joint loss functions, the computation is challenging especially when the dimension of parameters is large since the loss functions are neither differentiable nor convex. To reduce the computational effort, we propose a two-step estimation procedure by first estimating the quantile regression parameters with standard quantile regression. We show that the two-step estimator has the same asymptotic properties as the joint estimator, but the former is numerically more efficient. We further develop a score-type inference method for hypothesis testing and confidence interval construction. Compared to the Wald-type method, the score method is robust against heterogeneity and is superior in finite samples, especially for cases with a large number of confounding factors. We demonstrate the advantages of the proposed methods over existing approaches through numerical studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源