论文标题
来自二维非线性schrödinger方程的点涡流模型的哈密顿衍生物
Hamiltonian derivation of the point vortex model from the two-dimensional nonlinear Schrödinger equation
论文作者
论文摘要
我们从二维非线性schr {Ö} dinger方程式开始,从汉密尔顿的角度出发,在二维非线性schr {Ö} dinger方程开始的严格衍生物,该方程在空间内爆的强冷凝水的背景下以良好的分离,亚音速涡流的极限为准。作为推论,我们首次计算出高精度的孤立基本Pitaevskii涡流的自我能源。
We present a rigorous derivation of the point vortex model starting from the two-dimensional nonlinear Schr{ö}dinger equation, from the Hamiltonian perspective, in the limit of well-separated, subsonic vortices on the background of a spatially-infinite strong condensate. As a corollary, we calculate to high accuracy the self-energy of an isolated elementary Pitaevskii vortex, for the first time.