论文标题

使用稀缺的时间序列数据对规模公司进行仿真信息外推出收入的外推和信心估算

Simulation-Informed Revenue Extrapolation with Confidence Estimate for Scaleup Companies Using Scarce Time-Series Data

论文作者

Cao, Lele, Horn, Sonja, von Ehrenheim, Vilhelm, Stahl, Richard Anselmo, Landgren, Henrik

论文摘要

投资专业人员依靠将公司收入推送到未来(即收入预测)来近似规模估值(高增长阶段的私人公司)并为他们的投资决定提供了信息。这项任务是手动和经验的,使预测质量在很大程度上取决于投资专业人员的经验和见解。此外,关于规模的财务数据通常是专有,昂贵和稀缺的,排除了广泛采用数据驱动的方法。为此,我们提出了一种模拟的收入外推(SIRE)算法,该算法在小型数据集和短时间序列上产生精细的长期收入预测。 SIRE将收入动力学建模为线性动力学系统(LDS),该系统使用EM算法解决。主要的创新在于如何在培训和推论过程中获得嘈杂的收入测量值。 Sire为在各个部门运作并提供置信度估算的规模工作。关于两个实际任务的定量实验表明,父亲大大超过了基线方法。当父亲从短期序列中推断出长期预测时,我们还会观察到高性能。绩效效率的平衡和结果的解释性也得到了经验验证。从投资专业人员的角度进行评估,父亲可以精确地找到在2至5年内具有巨大潜在回报的规模。此外,我们的定性检查说明了父亲收入预测的一些有利属性。

Investment professionals rely on extrapolating company revenue into the future (i.e. revenue forecast) to approximate the valuation of scaleups (private companies in a high-growth stage) and inform their investment decision. This task is manual and empirical, leaving the forecast quality heavily dependent on the investment professionals' experiences and insights. Furthermore, financial data on scaleups is typically proprietary, costly and scarce, ruling out the wide adoption of data-driven approaches. To this end, we propose a simulation-informed revenue extrapolation (SiRE) algorithm that generates fine-grained long-term revenue predictions on small datasets and short time-series. SiRE models the revenue dynamics as a linear dynamical system (LDS), which is solved using the EM algorithm. The main innovation lies in how the noisy revenue measurements are obtained during training and inferencing. SiRE works for scaleups that operate in various sectors and provides confidence estimates. The quantitative experiments on two practical tasks show that SiRE significantly surpasses the baseline methods by a large margin. We also observe high performance when SiRE extrapolates long-term predictions from short time-series. The performance-efficiency balance and result explainability of SiRE are also validated empirically. Evaluated from the perspective of investment professionals, SiRE can precisely locate the scaleups that have a great potential return in 2 to 5 years. Furthermore, our qualitative inspection illustrates some advantageous attributes of the SiRE revenue forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源