论文标题

与旋转轨道相互作用的非铁质准晶体中的皮肤效应和动态离域化

Skin effect and dynamical delocalization in non-Hermitian quasicrystals with spin-orbit interaction

论文作者

Chakrabarty, Aditi, Datta, Sanjoy

论文摘要

光谱和动力学定位 - 定位(DL)过渡的研究揭示了广泛的非富特系统中有趣的特征。本研究旨在探索在存在Rashba Spin-Orbit(RSO)相互作用的情况下非对称跳跃的非热型准膜系统中的光谱和动力学特性。特别是,在这样的系统中,我们已经确定了DL转变与能量谱的并发变化有关,在该型位的特征状态始终打破了与无RSO相互作用的系统相反的准二级潜能的所有strenghts的时间反转对称性。值得注意的是,我们发现在开放边界条件下的能量谱的现实经常被象征为皮肤效应的标志,是一种系统大小的依赖现象,即使相关能量确实很复杂,也会显得显得也是如此。另外,证明RSO相互作用中的自旋式术语实际上具有降低皮肤效应方向性的趋势。在仔细检查我们的非富米系统中的动力学属性时,我们公布的是,尽管光谱DL过渡符合动态相变的事实,但有趣的是,该系统均涉及过度散发和负面扩散动力学状态,这取决于频谱定位的RSO相互作用的强度。

The investigations of the spectral and dynamical delocalization-localization (DL) transition have revealed intriguing features in a wide range of non-Hermitian systems. The present study aims at exploring the spectral and dynamical properties in a non-Hermitian quasiperiodic system with asymmetric hopping in the presence of Rashba Spin-Orbit (RSO) interaction. In particular, in such systems, we have identified that the DL transition is associated with a concurrent change in the energy spectrum, where the eigenstates always break the time-reversal symmetry for all strenghts of the quasiperiodic potential, contrary to the systems without RSO interaction. Remarkably, we find that the reality of energy spectrum under the open boundary condition that is frequently symbolised as a hallmark of the skin-effect, is a system-size dependent phenomena, and appears even when the associated energies are indeed complex. In addition, it is demonstrated that the spin-flip term in the RSO interaction in fact possesses a tendency to diminish the directionality of the skin-effect. On scrutinizing the dynamical attributes in our non-Hermitian system, we unveil that in spite of the fact that the spectral DL transition accords with the dynamical phase transition, interestingly, the system comes across hyper-diffusive and negative diffusion dynamical regimes depending upon the strength of the RSO interaction, in the spectrally localized regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源