论文标题

适合3D可压缩欧拉方程的粗糙解决方案的拟合度

Well-posedness for rough solutions of the 3D compressible Euler equations

论文作者

Andersson, Lars, Zhang, Huali

论文摘要

在本文中,我们证明了可压缩3D Euler方程的库奇问题的全部良好性,即本地存在,唯一性和对初始数据的持续依赖性,具有初始速度,密度和涡度$(\ Mathbf {V} _0,ρ_0,ρ_0,ρ_0,ρ_0,\ mathbf {w} w} _0) h^{2+} \ times h^{2} $,在\ cite {wqeuler}的规律性条件下提高。对于可压缩欧拉系统的粗糙解决方案的初始数据的连续依赖是新的,即使具有与\ cite {wqeuler}中相同的规律性条件。此外,我们证明了带有熵的3D可压缩欧拉系统的新局部适应性结果。

In this paper we prove full local well-posedness for the Cauchy problem for the compressible 3D Euler equation, i.e. local existence, uniqueness, and continuous dependence on initial data, with initial velocity, density and vorticity $(\mathbf{v}_0, ρ_0, \mathbf{w}_0) \in H^{2+} \times H^{2+} \times H^{2}$, improving on the regularity conditions of \cite{WQEuler}. The continuous dependence on initial data for rough solutions of the compressible Euler system is new, even with the same regularity conditions as in \cite{WQEuler}. In addition, we prove new local well-posedness results for the 3D compressible Euler system with entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源