论文标题

在近期量子计算机上进行热弛豫的激进对的量子节拍的量子模拟

Hamiltonian Simulation of Quantum Beats in Radical Pairs Undergoing Thermal Relaxation on Near-term Quantum Computers

论文作者

Tolunay, Meltem, Liepuoniute, Ieva, Vyushkova, Mariya, Jones, Barbara A.

论文摘要

激进对机理的量子动力学是量子生物学,材料科学和自旋化学的主要驱动力。该机制的丰富量子物理基础是由单线和三重旋转状态之间的相干振荡(量子拍打)确定的,及其与环境的相互作用,这对于在实验探索和计算上模拟的挑战。在这项工作中,我们利用量子计算机来模拟两个正在进行量子薄荷现象的激进对系统的热弛豫和热弛豫。我们研究了具有非平凡超精细偶联相互作用的自由基对系统,即9,10- octalin+/p-甲苯基-D14和2,3-二甲基丁烷/P-甲苯基-D14分别具有一组和两组磁性等效的核。这些系统中的热松弛动力学使用三种方法进行模拟:Kraus通道表示,Qiskit AER上的噪声模型以及近期量子硬件上存在的固有量子噪声。通过利用固有的量子噪声,我们能够在两个激进对中模拟嘈杂的量子beats比任何经典近似或量子模拟器更好。虽然顺磁松弛的经典模拟会导致误差和不确定性随时间的函数,但近期量子计算机可以在整个时间演变中匹配实验数据,从而展示其独特的适合性和未来在模拟化学中开放量子系统方面的希望。

Quantum dynamics of the radical pair mechanism is a major driving force in quantum biology, materials science, and spin chemistry. The rich quantum physical underpinnings of the mechanism are determined by a coherent oscillation (quantum beats) between the singlet and triplet spin states and their interactions with the environment, which is challenging to experimentally explore and computationally simulate. In this work, we take advantage of quantum computers to simulate the Hamiltonian evolution and thermal relaxation of two radical pair systems undergoing the quantum-beat phenomena. We study radical pair systems with nontrivial hyperfine coupling interactions, namely, 9,10-octalin+/p-terphenyl-d14 and 2,3-dimethylbutane/p-terphenyl-d14 that have one and two groups of magnetically equivalent nuclei, respectively. Thermal relaxation dynamics in these systems are simulated using three methods: Kraus channel representations, noise models on Qiskit Aer and the inherent qubit noise present on the near-term quantum hardware. By leveraging the inherent qubit noise, we are able to simulate noisy quantum beats in the two radical pairs better than with any classical approximation or quantum simulator. While classical simulations of paramagnetic relaxation grow errors and uncertainties as a function of time, near-term quantum computers can match the experimental data throughout its time evolution, showcasing their unique suitability and future promise in simulating open quantum systems in chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源