论文标题

低通测量的非凸形尖峰反卷积的局部几何形状

Local Geometry of Nonconvex Spike Deconvolution from Low-Pass Measurements

论文作者

Da Costa, Maxime Ferreira, Chi, Yuejie

论文摘要

尖峰反卷积是通过已知点扩散功能从其卷积中恢复点源的问题,在许多传感和成像应用中起着基本作用。在本文中,我们调查了恢复点源参数的本地几何形状$ \ unicode {x2014} $,包括振幅和位置$ \ unicode {x2014} $,通过最大程度地降低天然的非convex最小值损失功能来测量观察残留物。我们提出了梯度下降(GD)的预处理变体,其中搜索方向通过一些精心设计的预处理矩阵缩放。我们从一个简单的固定预处理设计开始,该设计以与振幅不同的规模调整了位置的学习速率,并表明它达到了收敛$ \ unicode {x2014} $的线性速率,而在入口错误$ \ unicode $ \ unicode $ \ unicode $ \ unicode {x2014} $中,最初是在较大的真实情况下,就在较大的情况下是在较大的范围内。但是,当源振幅的动态范围较大时,收敛速率会显着降低。为了桥接这个问题,我们引入了一种自适应预处理设计,该设计基于当前的估计值以迭代变化的方式弥补了不同来源的学习率。自适应设计证明会导致与动态范围无关的加速收敛速率,突出了非凸峰尖峰反卷积中自适应预处理的好处。提供数值实验以证实理论发现。

Spike deconvolution is the problem of recovering the point sources from their convolution with a known point spread function, which plays a fundamental role in many sensing and imaging applications. In this paper, we investigate the local geometry of recovering the parameters of point sources$\unicode{x2014}$including both amplitudes and locations$\unicode{x2014}$by minimizing a natural nonconvex least-squares loss function measuring the observation residuals. We propose preconditioned variants of gradient descent (GD), where the search direction is scaled via some carefully designed preconditioning matrices. We begin with a simple fixed preconditioner design, which adjusts the learning rates of the locations at a different scale from those of the amplitudes, and show it achieves a linear rate of convergence$\unicode{x2014}$in terms of entrywise errors$\unicode{x2014}$when initialized close to the ground truth, as long as the separation between the true spikes is sufficiently large. However, the convergence rate slows down significantly when the dynamic range of the source amplitudes is large. To bridge this issue, we introduce an adaptive preconditioner design, which compensates for the learning rates of different sources in an iteration-varying manner based on the current estimate. The adaptive design provably leads to an accelerated convergence rate that is independent of the dynamic range, highlighting the benefit of adaptive preconditioning in nonconvex spike deconvolution. Numerical experiments are provided to corroborate the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源