论文标题

SIM2E:基准测试对应算法的对应关系的等效能力

SIM2E: Benchmarking the Group Equivariant Capability of Correspondence Matching Algorithms

论文作者

Su, Shuai, Zhao, Zhongkai, Fei, Yixin, Li, Shuda, Chen, Qijun, Fan, Rui

论文摘要

匹配是计算机视觉和机器人技术应用中的一个基本问题。最近使用神经网络解决对应匹配问题最近正在上升。旋转等级和比例等级性在对应匹配应用中都至关重要。经典的对应匹配方法旨在承受缩放和旋转转换。但是,使用卷积神经网络(CNN)提取的特征仅在一定程度上是翻译等值的。最近,研究人员一直在努力改善基于群体理论的CNN的旋转均衡性。 SIM(2)是2D平面中的相似性转换组。本文介绍了专门用于评估SIM(2) - 等级对应算法的专门数据集。我们比较了16个最先进(SOTA)对应匹配方法的性能。实验结果表明,在各种SIM(2)转换条件下,组模棱两可算法对于对应匹配的重要性。由于基于CNN的对应匹配方法达到的子像素精度不令人满意,因此该特定领域需要在未来的工作中更多地关注。我们的数据集可公开可用:mias.group/sim2e。

Correspondence matching is a fundamental problem in computer vision and robotics applications. Solving correspondence matching problems using neural networks has been on the rise recently. Rotation-equivariance and scale-equivariance are both critical in correspondence matching applications. Classical correspondence matching approaches are designed to withstand scaling and rotation transformations. However, the features extracted using convolutional neural networks (CNNs) are only translation-equivariant to a certain extent. Recently, researchers have strived to improve the rotation-equivariance of CNNs based on group theories. Sim(2) is the group of similarity transformations in the 2D plane. This paper presents a specialized dataset dedicated to evaluating sim(2)-equivariant correspondence matching algorithms. We compare the performance of 16 state-of-the-art (SoTA) correspondence matching approaches. The experimental results demonstrate the importance of group equivariant algorithms for correspondence matching on various sim(2) transformation conditions. Since the subpixel accuracy achieved by CNN-based correspondence matching approaches is unsatisfactory, this specific area requires more attention in future works. Our dataset is publicly available at: mias.group/SIM2E.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源