论文标题

部分可观测时空混沌系统的无模型预测

GAIROSCOPE: Injecting Data from Air-Gapped Computers to Nearby Gyroscopes

论文作者

Guri, Mordechai

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

It is known that malware can leak data from isolated, air-gapped computers to nearby smartphones using ultrasonic waves. However, this covert channel requires access to the smartphone's microphone, which is highly protected in Android OS and iOS, and might be non-accessible, disabled, or blocked. In this paper we present `GAIROSCOPE,' an ultrasonic covert channel that doesn't require a microphone on the receiving side. Our malware generates ultrasonic tones in the resonance frequencies of the MEMS gyroscope. These inaudible frequencies produce tiny mechanical oscillations within the smartphone's gyroscope, which can be demodulated into binary information. Notably, the gyroscope in smartphones is considered to be a 'safe' sensor that can be used legitimately from mobile apps and javascript. We introduce the adversarial attack model and present related work. We provide the relevant technical background and show the design and implementation of GAIROSCOPE. We present the evaluation results and discuss a set of countermeasures to this threat. Our experiments show that attackers can exfiltrate sensitive information from air-gapped computers to smartphones located a few meters away via Speakers-to-Gyroscope covert channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源