论文标题
3D轴对称性弗拉索夫·马克斯韦尔系统的连续平衡系
Continuous Family of Equilibria of the 3D Axisymmetric Relativistic Vlasov-Maxwell System
论文作者
论文摘要
我们考虑了相对论的Vlasov-Maxwell系统(RVM)在具有完美导电边界的一般轴对称空间结构域上,该域在问题中具有轴对称性,可以透明地反映颗粒。我们为无关的RVM构建连续的全局参数解集。这些集合中的溶液具有任意较大的电磁场,并且粒子密度函数具有$ f^\ pm =μ^\ pm(e^\ pm(x,v),p^\ pm(x,v))$,其中$ e^\ pm $和$ pm $和$ p^\ pm $分别是粒子能量和角度动量。特别是,对于某些类别的示例,我们表明频谱稳定性随着参数从$ 0 $不等到$ \ infty $而变化。
We consider the relativistic Vlasov-Maxwell system (RVM) on a general axisymmetric spatial domain with perfect conducting boundary which reflects particles specularly, assuming axisymmetry in the problem. We construct continuous global parametric solution sets for the time-independent RVM. The solutions in these sets have arbitrarily large electromagnetic field and the particle density functions have the form $f^\pm = μ^\pm (e^\pm (x, v), p^\pm (x, v))$, where $e^\pm$ and $p^\pm$ are the particle energy and angular momentum, respectively. In particular, for a certain class of examples, we show that the spectral stability changes as the parameter varies from $0$ to $\infty$.