论文标题

学习子像素的差异分布,用于光场深度估计

Learning Sub-Pixel Disparity Distribution for Light Field Depth Estimation

论文作者

Chao, Wentao, Wang, Xuechun, Wang, Yingqian, Wang, Guanghui, Duan, Fuqing

论文摘要

光场(LF)深度估计在许多基于LF的应用中起着至关重要的作用。现有的LF深度估计方法将深度估计视为回归问题,其中采用像素L1损失来监督培训过程。但是,差异图只是差异分布的一个子空间投影(即期望),这对于模型学习至关重要。在本文中,我们提出了一种简单而有效的方法,可以通过充分利用深网的力量来学习子像素差异分布,尤其是对于狭窄基线的LF。我们在子像素水平上构建成本量,以产生更细的差异分布,并设计不确定性感知的焦点损失,以监督对地面真相的预测差异分布。广泛的实验结果证明了我们的方法的有效性。您的方法在HCI 4D LF基准上的最新最先进的LF深度深度算法就所有四个精度指标(即BadPix 0.01,BadPix 0.01,0.03,BadPix 0.07和MSSE 0.07和MSE $ \ times times times $ 100)而言。该方法的代码和模型可在\ url {https://github.com/chaowentao/subfocal}上获得。

Light field (LF) depth estimation plays a crucial role in many LF-based applications. Existing LF depth estimation methods consider depth estimation as a regression problem, where a pixel-wise L1 loss is employed to supervise the training process. However, the disparity map is only a sub-space projection (i.e., an expectation) of the disparity distribution, which is essential for models to learn. In this paper, we propose a simple yet effective method to learn the sub-pixel disparity distribution by fully utilizing the power of deep networks, especially for LF of narrow baselines. We construct the cost volume at the sub-pixel level to produce a finer disparity distribution and design an uncertainty-aware focal loss to supervise the predicted disparity distribution toward the ground truth. Extensive experimental results demonstrate the effectiveness of our method.Our method significantly outperforms recent state-of-the-art LF depth algorithms on the HCI 4D LF Benchmark in terms of all four accuracy metrics (i.e., BadPix 0.01, BadPix 0.03, BadPix 0.07, and MSE $\times$100). The code and model of the proposed method are available at \url{https://github.com/chaowentao/SubFocal}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源