论文标题
自由田间实现和手性环球中心人
Free field realisation and the chiral universal centraliser
论文作者
论文摘要
在Moore-Tachikawa的TQFT形式上,描述了$ \ Mathcal {s} $理论的Higgs分支,与未施加的球体相关的空间是$ \ Mathfrak {g} $是Universal Centraliser $ \ Mathfrak $ \ Mathfrak {Z} _g $ \ nie,从更实际的角度来看,这个空间是作为纯$ \ Mathcal {n}的库仑分支= 4 $仪表理论,在三个维度上使用量规组$ \ check {g} $,langlands dual。在描述类$ \ Mathcal {s} $的手性代数的类似形式主义中,与球体相关的顶点代数已被称为\ emph {Mathal Universal Centraliser}。在本文中,我们从$ \ mathfrak类型的Kostant-toda晶格的封面中构建了一个开放的,符合性的嵌入到$ g $的环球中心人的封面上,扩大了Kostant的经典结果。使用此嵌入以及对$ \ mathfrak {z} _g $的泊松代数结构的一些观察,我们建议对任何简单的组$ g $的手性环球中心者进行免费的字段实现。我们利用这种实现来开发对类$ \ mathcal {s} $类型$ \ mathfrak {a} _1 $的手性代数的免费字段实现,用于零属的理论,最多六次刺穿。这些实现使广义$ s $双重性完全体现了,尽管从技术上讲是繁重的,但在概念上,对六个以上的穿刺的概括是清楚的。
In the TQFT formalism of Moore-Tachikawa for describing Higgs branches of theories of class $\mathcal{S}$, the space associated to the unpunctured sphere in type $\mathfrak{g}$ is the universal centraliser $\mathfrak{Z}_G$, where $\mathfrak{g}=Lie(G)$. In more physical terms, this space arises as the Coulomb branch of pure $\mathcal{N}=4$ gauge theory in three dimensions with gauge group $\check{G}$, the Langlands dual. In the analogous formalism for describing chiral algebras of class $\mathcal{S}$, the vertex algebra associated to the sphere has been dubbed the \emph{chiral universal centraliser}. In this paper, we construct an open, symplectic embedding from a cover of the Kostant-Toda lattice of type $\mathfrak{g}$ to the universal centraliser of $G$, extending a classic result of Kostant. Using this embedding and some observations on the Poisson algebraic structure of $\mathfrak{Z}_G$, we propose a free field realisation of the chiral universal centraliser for any simple group $G$. We exploit this realisation to develop free field realisations of chiral algebras of class $\mathcal{S}$ of type $\mathfrak{a}_1$ for theories of genus zero with up to six punctures. These realisations make generalised $S$-duality completely manifest, and the generalisation to more than six punctures is conceptually clear, though technically burdensome.