论文标题

从旋转角度来看

Homogeneous Sasakian and 3-Sasakian Structures from the Spinorial Viewpoint

论文作者

Hofmann, Jordan

论文摘要

我们在任意维度上为Sasakian和3-Sasakian结构进行了旋转构造,在第5和7方面概括了先前已知的结果。此外,我们可以完整描述在同质的3-Sasakian空间上向不变的纺纱器空间的完整描述,并表明它被某些不可发射的spinor spinor spinor spinor spinor spine spriant spine spine spectiant spinial spinor spine spine。最后,我们为在同质的3-Sasakian空间上不变的Riemannian杀死旋转器的空间提供了基础,并确定其中哪种诱导了同质的3-Sasakian结构。

We give a spinorial construction of Sasakian and 3-Sasakian structures in arbitrary dimension, generalizing previously known results in dimensions 5 and 7. Furthermore, we obtain a complete description of the space of invariant spinors on a homogeneous 3-Sasakian space, and show that it is spanned by the Clifford products of invariant differential forms with a certain invariant Killing spinor. Finally, we give a basis for the space of invariant Riemannian Killing spinors on a homogeneous 3-Sasakian space, and determine which of these induce the homogeneous 3-Sasakian structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源