论文标题
像放射科医生一样诊断:基于属性的医学图像诊断的混合神经培养基推理
Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for Attribute-Based Medical Image Diagnosis
论文作者
论文摘要
在临床实践中,放射科医生经常使用属性,例如病变的形态学和外观特征,以帮助疾病诊断。有效地对属性进行建模以及涉及属性的所有关系可以提高医学图像诊断算法的概括能力和可验证性。在本文中,我们介绍了一种用于基于可验证属性的医学图像诊断的混合神经培养基推理算法。在我们的混合算法中,有两个平行分支,一个贝叶斯网络分支执行概率因果关系推理,图形卷积网络分支执行了使用特征表示的更通用的关系建模和推理。这两个分支之间的紧密耦合是通过跨网络注意机制及其分类结果的融合来实现的。我们已成功地将混合推理算法应用于两个具有挑战性的医学图像诊断任务。在LIDC-IDRI基准数据集上,用于CT图像中肺结核的良性临床分类,我们的方法实现了95.36 \%的新最新精度,AUC为96.54 \%。我们的方法还可以在内部胸部X射线图像数据集上提高3.24 \%的精度,以诊断结核病。我们的消融研究表明,在非常有限的培训数据下,与纯神经网络体系结构相比,我们的混合算法的概括性能要好得多。
During clinical practice, radiologists often use attributes, e.g. morphological and appearance characteristics of a lesion, to aid disease diagnosis. Effectively modeling attributes as well as all relationships involving attributes could boost the generalization ability and verifiability of medical image diagnosis algorithms. In this paper, we introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis. There are two parallel branches in our hybrid algorithm, a Bayesian network branch performing probabilistic causal relationship reasoning and a graph convolutional network branch performing more generic relational modeling and reasoning using a feature representation. Tight coupling between these two branches is achieved via a cross-network attention mechanism and the fusion of their classification results. We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks. On the LIDC-IDRI benchmark dataset for benign-malignant classification of pulmonary nodules in CT images, our method achieves a new state-of-the-art accuracy of 95.36\% and an AUC of 96.54\%. Our method also achieves a 3.24\% accuracy improvement on an in-house chest X-ray image dataset for tuberculosis diagnosis. Our ablation study indicates that our hybrid algorithm achieves a much better generalization performance than a pure neural network architecture under very limited training data.