论文标题

可计数的可计入式戒指的理想

Countable strongly annihilated ideals in commutative rings

论文作者

Mohamadian, Rostam

论文摘要

在本文中,我们介绍并研究了可计数的概念,在交换环上,尤其是在连续功能的环中,尤其是在交换环上的理想。我们表明,当且仅当它是真正的最大$ z^\ circ $ ideal时,$ c(x)$中最大的理想就可以被灭绝。事实证明,$ x $在且仅当可计数的强烈歼灭理想时才是一个几乎$ p $ - 空间,并且在x $中的任何$ x \ in x $中,只有每一个$ m_x $都是一个可计数强的理想,并且只有一个可计数的强烈歼灭的理想,并且只有当时可计算的$ z $ - 理想是重合的。我们观察到,当且仅当每个可计数强的理想均被固定时,只有几乎$ p $ -p $ x $是lindelof。我们对吉尔默和麦克亚当提出的一个问题给出了负面答案。

In this paper we introduce and study the concept of countable strongly annihilated ideal in commutative rings, in particular in rings of continuous functions. We show that a maximal ideal in $C(X)$ is countable strongly annihilated if and only if it is a real maximal $z^\circ$-ideal. It turns out that $X$ is an almost $P$-space if and only if countable strongly annihilated ideals and strongly divisible $z$-ideals coincide if and only if every $M_x$ is a countable strongly annihilated ideal, for any $x\in X$. We observe that an almost $P$-space $X$ is Lindelof if and only if every countable strongly annihilated ideal is fixed. We give a negative answer to a question raised by Gilmer and McAdam.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源