论文标题
用于全球控制和集成修剪的量子计算的硅边缘点体系结构
Silicon edge-dot architecture for quantum computing with global control and integrated trimming
论文作者
论文摘要
提出了基于硅金属氧化物 - 氧化通导器技术的可扩展量子信息处理架构,结合了来自平面和3D硅在绝缘子技术的量子硬件元件。该体系结构在``单元牢房''方法中表达,在``单位单元''方法中表达了二维的瓷砖单元格,允许细胞间的近端近纽布相互作用,使该体系结构与表面代码兼容,以实现容错的量子计算。该体系结构利用了全局控制方法,大大降低了处理器的复杂性:使用全球施加的自旋共振技术实现了单量控制,并且两数数分的相互作用是由大量子点介导的。此外,通过整合电子设备来实现量子点电压参考的单个修剪,提出了对设备变化的解决方案。这样的组合解决方案解决了在完全基于硅的架构中缩放量子机的几个主要障碍。
A scalable quantum information processing architecture based on silicon metal-oxide-semiconductor technology is presented, combining quantum hardware elements from planar and 3D silicon-on-insulator technologies. This architecture is expressed in the ``unit cell'' approach, where tiling cells in two dimensions and allowing inter-cellular nearest-neighbour interactions makes the architecture compatible with the surface code for fault tolerant quantum computation. The architecture utilises global control methods, substantially reducing processor complexity with scale: Single-qubit control is achieved using globally applied spin-resonance techniques and two-qubit interactions are mediated by large quantum dots. Further, a solution to device variation is proposed through integration of electronics for individual trimming of quantum dot voltage references. Such a combined set of solutions addresses several major barriers to scaling quantum machines within completely silicon based architectures.