论文标题
一种基于因果关系的学习方法,用于从具有随机参数化的部分观察结果发现复杂系统的基本动力学
A Causality-Based Learning Approach for Discovering the Underlying Dynamics of Complex Systems from Partial Observations with Stochastic Parameterization
论文作者
论文摘要
从数据中发现复杂系统的基本动力是一个重要的实际主题。受限的优化算法被广泛使用,并带来许多成功。但是,这种纯粹的数据驱动的方法可能在存在随机噪声的情况下会导致不正确的物理,并且无法通过不完整的数据轻松处理情况。在本文中,开发了一种具有部分观察结果的复杂湍流系统的新迭代学习算法,该算法在识别模型结构,恢复未观察到的变量和估计参数之间交替。首先,将基于因果关系的学习方法用于模型结构的稀疏识别,该方法考虑了从数据中预先学习的某些物理知识。它在应对特征之间的间接耦合方面具有独特的优势,并且对随机噪声具有鲁棒性。实用算法旨在促进高维系统的因果推断。接下来,构建了系统的非线性随机参数化,以表征未观察到的变量的时间演变。通过有效的非线性数据同化的封闭分析公式被利用以采样未观察到的变量的轨迹,然后将其视为合成观测值,以提高快速参数估计。此外,将状态变量依赖性和物理约束的定位纳入了学习过程,从而减轻了维度的诅咒并防止有限的时间爆破问题。数值实验表明,新算法成功地识别模型结构并为许多具有混乱动力学,时空多尺度结构,间歇性和极端事件的复杂非线性系统提供合适的随机参数化。
Discovering the underlying dynamics of complex systems from data is an important practical topic. Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely data-driven methods may bring about incorrect physics in the presence of random noise and cannot easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for complex turbulent systems with partial observations is developed that alternates between identifying model structures, recovering unobserved variables, and estimating parameters. First, a causality-based learning approach is utilized for the sparse identification of model structures, which takes into account certain physics knowledge that is pre-learned from data. It has unique advantages in coping with indirect coupling between features and is robust to the stochastic noise. A practical algorithm is designed to facilitate the causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic parameterization is built to characterize the time evolution of the unobserved variables. Closed analytic formula via an efficient nonlinear data assimilation is exploited to sample the trajectories of the unobserved variables, which are then treated as synthetic observations to advance a rapid parameter estimation. Furthermore, the localization of the state variable dependence and the physics constraints are incorporated into the learning procedure, which mitigate the curse of dimensionality and prevent the finite time blow-up issue. Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable stochastic parameterizations for many complex nonlinear systems with chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events.