论文标题

自组装脂肪酸结晶涂层表现出无毒的超疏水抗菌特性

Self-Assembled Fatty Acid Crystalline Coatings Display Non-Toxic Superhydrophobic Antimicrobial Properties

论文作者

Prudnikov, Elena, Polishchuk, Iryna, Sand, Andy, Hamad, Hanan Abu, Massad-Ivanir, Naama, Segal, Ester, Pokroy, Boaz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Superhydrophobcity is a well-known wetting phenomenon found in numerous plants and insects. It is achieved by the combination of the surfaces chemical properties and its surface roughness. Inspired by nature, numerous synthetic superhydrophobic surfaces have been developed for various applications. Designated surface coating is one of the fabrication routes to achieve the superhydrophobicity. Yet, many of these coatings, such as fluorine-based formulations, may pose severe health and environmental risks, limiting the applicability. Herein, we present a new family of superhydrophobic coatings comprised of natural saturated fatty acids, which are not only a part of our daily diet, but can be produced from renewable feedstock, providing a safe and sustainable alternative to existing state-of-the-art. These crystalline coatings are readily fabricated via single-step deposition routes, thermal deposition or spray-coating. The fatty acids self-assemble into highly hierarchical crystalline structures exhibiting a water contact angle of about 165 degrees and contact angle hysteresis lower than 6 degrees, while their properties and morphology depend on the specific fatty acid used as well as on the deposition technique. Moreover, the fatty acid coatings demonstrate excellent thermal stability. Importantly these new family of coatings displays excellent anti-biofouling and antimicrobial properties against Escherichia coli and Listeria innocua, used as relevant model Gram-negative and Gram-positive bacteria, respectively. We believe that these coatings have a great application potential in the fields, where other alternatives are prohibited due to safety limitations, while at the same time their usage in other regulation-free applications is not limited.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源