论文标题
使用量子计算和分区的随机森林方法检测心脏病检测
Heart Disease Detection using Quantum Computing and Partitioned Random Forest Methods
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Heart disease morbidity and mortality rates are increasing, which has a negative impact on public health and the global economy. Early detection of heart disease reduces the incidence of heart mortality and morbidity. Recent research has utilized quantum computing methods to predict heart disease with more than 5 qubits and are computationally intensive. Despite the higher number of qubits, earlier work reports a lower accuracy in predicting heart disease, have not considered the outlier effects, and requires more computation time and memory for heart disease prediction. To overcome these limitations, we propose hybrid random forest quantum neural network (HQRF) using a few qubits (two to four) and considered the effects of outlier in the dataset. Two open-source datasets, Cleveland and Statlog, are used in this study to apply quantum networks. The proposed algorithm has been applied on two open-source datasets and utilized two different types of testing strategies such as 10-fold cross validation and 70-30 train/test ratio. We compared the performance of our proposed methodology with our earlier algorithm called hybrid quantum neural network (HQNN) proposed in the literature for heart disease prediction. HQNN and HQRF outperform in 10-fold cross validation and 70/30 train/test split ratio, respectively. The results show that HQNN requires a large training dataset while HQRF is more appropriate for both large and small training dataset. According to the experimental results, the proposed HQRF is not sensitive to the outlier data compared to HQNN. Compared to earlier works, the proposed HQRF achieved a maximum area under the curve (AUC) of 96.43% and 97.78% in predicting heart diseases using Cleveland and Statlog datasets, respectively with HQNN. The proposed HQRF is highly efficient in detecting heart disease at an early stage and will speed up clinical diagnosis.