论文标题

用于古典和焊接链接的新的打结操作

A new unknotting operation for classical and welded links

论文作者

Ali, Danish, Yang, Zhiqing, Sheikh, Mohd Ibrahim

论文摘要

打结的操作是结图上的局部变化。任何结图都可以通过一系列未结的操作以及一些雷迪德的动作将其转换为琐碎的解开图。打结的操作在结理论中具有重要意义。它们用于研究结的复杂性和结的复杂性。解开操作在生物学,化学和物理学中也很重要,可以研究弦,有机化合物和DNA的复杂纠缠。在本文中,我们引入了一个新的打结操作,称为对角线,用于古典和焊接结。我们表明,可以通过一系列对角线移动来实现交叉变化,三角移动,锋利移动,伽马移动,N-GON MOVE,PASS MOVE和4-MOVE。我们还定义了对角线移动引起的距离并研究其特性。

An unknotting operation is a local change on knot diagrams. Any knot diagram can be transformed into a trivial unknot diagram by a series of unknotting operations plus some Reidemeister moves. Unknotting operations have significant importance in knot theory; they are used to study the complexity of knots and invariants of knots. Unknotting operations are also important in biology, chemistry, and physics to study the sophisticated entanglements of strings, organic compounds, and DNA. In this paper, we introduced a new unknotting operation called the diagonal move for classical and welded knots. We show that the crossing change, Delta-move, Sharp-move, Gamma-move, n-gon move, pass move, and 4-move can be realized by a sequence of diagonal moves. We also define the distance induced by the diagonal move and study its properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源