论文标题
使用深度学习的Tokamak等离子安全系数的重建
Reconstruction of tokamak plasma safety factor profile using deep learning
论文作者
论文摘要
在Tokamak操作中,准确的平衡重建对于可靠的实时控制和现实的射击后不稳定性分析至关重要。安全系数(Q)定义了磁场线螺距角,这是平衡重建中的中心元素。运动型(MSE)诊断已成为对配备中性束的Tokamaks中磁场线螺距角的标准测量。但是,由于实验限制,MSE数据并不总是可用的,尤其是在没有中性光束的将来的设备中。在这里,我们为Q谱重建(SGTC-QR)的陀螺仪旋转代码(SGTC-QR)开发了一个基于学习的替代模型,该模型可以使用MSE进行测量,以模仿MSE约束。该模型表明了有希望的性能,子毫秒推理时间与实时等离子体控制系统兼容。
In tokamak operations, accurate equilibrium reconstruction is essential for reliable real-time control and realistic post-shot instability analysis. The safety factor (q) profile defines the magnetic field line pitch angle, which is the central element in equilibrium reconstruction. The motional Stark effect (MSE) diagnostic has been a standard measurement for the magnetic field line pitch angle in tokamaks that are equipped with neutral beams. However, the MSE data are not always available due to experimental constraints, especially in future devices without neutral beams. Here we develop a deep learning-based surrogate model of the gyrokinetic toroidal code for q profile reconstruction (SGTC-QR) that can reconstruct the q profile with the measurements without MSE to mimic the traditional equilibrium reconstruction with the MSE constraint. The model demonstrates promising performance, and the sub-millisecond inference time is compatible with the real-time plasma control system.