论文标题
来自单眼视频的动画3D人的神经捕获
Neural Capture of Animatable 3D Human from Monocular Video
论文作者
论文摘要
我们提出了一种新颖的范式,该范式是通过单眼视频输入来构建可动画的3D人类代表,以便可以以任何看不见的姿势和观点呈现。我们的方法基于由基于网格的参数3D人体模型操纵的动态神经辐射场(NERF),该模型用作几何代理。以前的方法通常依靠多视频视频或准确的3D几何信息作为其他输入;此外,大多数方法在概括地看不见的姿势时会降低质量。我们确定概括的关键是查询动态nerf的良好输入嵌入:良好的输入嵌入应定义完整量化空间中的注射映射,并在姿势变化下表面网格变形为指导。基于此观察结果,我们建议将输入查询嵌入其与局部表面区域的关系,并在网格顶点上跨越一组Geodesic最近的邻居跨越。通过包括位置和相对距离信息,我们的嵌入定义了距离保存的变形映射,并且可以很好地概括为看不见的姿势。为了减少对其他输入的依赖性,我们首先使用现成的工具初始化人均3D网格初始化,然后提出一条管道以共同优化NERF并完善初始网格。广泛的实验表明,我们的方法可以在看不见的姿势和观点下合成合理的人类渲染结果。
We present a novel paradigm of building an animatable 3D human representation from a monocular video input, such that it can be rendered in any unseen poses and views. Our method is based on a dynamic Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D human model serving as a geometry proxy. Previous methods usually rely on multi-view videos or accurate 3D geometry information as additional inputs; besides, most methods suffer from degraded quality when generalized to unseen poses. We identify that the key to generalization is a good input embedding for querying dynamic NeRF: A good input embedding should define an injective mapping in the full volumetric space, guided by surface mesh deformation under pose variation. Based on this observation, we propose to embed the input query with its relationship to local surface regions spanned by a set of geodesic nearest neighbors on mesh vertices. By including both position and relative distance information, our embedding defines a distance-preserved deformation mapping and generalizes well to unseen poses. To reduce the dependency on additional inputs, we first initialize per-frame 3D meshes using off-the-shelf tools and then propose a pipeline to jointly optimize NeRF and refine the initial mesh. Extensive experiments show our method can synthesize plausible human rendering results under unseen poses and views.