论文标题
使用图调查的神经网络从高光谱数据中分类的树种物种分类
Tree species classification from hyperspectral data using graph-regularized neural networks
论文作者
论文摘要
我们提出了一种用于树种分类的新型图调查神经网络(GRNN)算法。所提出的算法包括用于图形结构的基于超像素的分割,像素神经网络分类器以及标签传播技术,以在稀疏注释的数据集上生成准确,逼真的(模拟树冠)分类。 Grnn不仅要胜过标准的印度松树HSI的几种最先进技术,而且还可以在法国圭亚那(FG)的异质森林(FG)上收集的新的HSI数据集获得很高的分类准确性(约92%),而当不到1%的像素被标记时。我们进一步表明,GRNN与最先进的半监督方法具有竞争力,并且对于不同数量的训练样本和重复试验的准确性很小,并具有随机采样的标记像素进行培训。
We propose a novel graph-regularized neural network (GRNN) algorithm for tree species classification. The proposed algorithm encompasses superpixel-based segmentation for graph construction, a pixel-wise neural network classifier, and the label propagation technique to generate an accurate and realistic (emulating tree crowns) classification map on a sparsely annotated data set. GRNN outperforms several state-of-the-art techniques not only for the standard Indian Pines HSI but also achieves a high classification accuracy (approx. 92%) on a new HSI data set collected over the heterogeneous forests of French Guiana (FG) when less than 1% of the pixels are labeled. We further show that GRNN is competitive with the state-of-the-art semi-supervised methods and exhibits a small deviation in accuracy for different numbers of training samples and over repeated trials with randomly sampled labeled pixels for training.