论文标题

CP-PINN:使用在线优化的物理知识的神经网络中数据驱动的更改点检测

CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks

论文作者

Dong, Zhikang, Polak, Pawel

论文摘要

我们研究了在给定PDE动力学的参数可能在随机时间显示更改点的情况下,研究部分微分方程(PDE)的逆问题。我们采用了物理信息的神经网络(PINN) - 能够估算PDE系统描述的任何物理定律的通用近似值,该近似值在神经网络训练期间用作正规化,限制了可允许的解决方案的空间并提高功能近似精度。我们证明,当系统表现出PDE动力学的突然变化时,这种正则化要么不足以准确估计真实动力学,要么可能导致模型误解和故障。因此,我们提出了使用总变化惩罚的PINNS扩展,该惩罚允许在PDE动力学中适应多个更改点,并显着改善了功能近似。这些更改点可以随着时间的推移在随机位置发生,并与解决方案同时估计。此外,我们引入了一种在线学习方法,以动态重新加权损失函数项。通过使用具有参数变化的各种方程的示例的经验分析,我们展示了我们提出的模型的优势。在没有更改点的情况下,该模型将恢复为原始PINNS模型。但是,与原始PINNS模型相比,当存在更改点时,我们的方法会产生出色的参数估计,改进的模型拟合以及训练误差减少。

We investigate the inverse problem for Partial Differential Equations (PDEs) in scenarios where the parameters of the given PDE dynamics may exhibit changepoints at random time. We employ Physics-Informed Neural Networks (PINNs) - universal approximators capable of estimating the solution of any physical law described by a system of PDEs, which serves as a regularization during neural network training, restricting the space of admissible solutions and enhancing function approximation accuracy. We demonstrate that when the system exhibits sudden changes in the PDE dynamics, this regularization is either insufficient to accurately estimate the true dynamics, or it may result in model miscalibration and failure. Consequently, we propose a PINNs extension using a Total-Variation penalty, which allows to accommodate multiple changepoints in the PDE dynamics and significantly improves function approximation. These changepoints can occur at random locations over time and are estimated concurrently with the solutions. Additionally, we introduce an online learning method for re-weighting loss function terms dynamically. Through empirical analysis using examples of various equations with parameter changes, we showcase the advantages of our proposed model. In the absence of changepoints, the model reverts to the original PINNs model. However, when changepoints are present, our approach yields superior parameter estimation, improved model fitting, and reduced training error compared to the original PINNs model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源