论文标题
使用相位敏感的THZ-Pulse检测,磁性域扫描成像
Magnetic domain scanning imaging using phase-sensitive THz-pulse detection
论文作者
论文摘要
在我们的研究中,我们使用THZ辐射确定了COFEB层中磁域的比对。我们根据自旋电流在磁化的COFEB/PT异质结构中通过FS-LASER - 脉冲产生THZ - 脉冲。 LT-GAAS AUSTON开关可检测辐射相位,并允许确定磁化比对。我们的扫描技术具有带动尺寸在亚微米范围内的台阶阶段,允许对二维磁性结构进行成像。从理论上讲,如果使用远场极限的聚焦光学元件,则分辨率仅限于波长的一半。通过应用近场成像,空间分辨率可增强到单位数千分尺范围。为此,在不同的几何形状中的自旋发射器,例如圆,三角形,正方形和大小准备观察磁化模式的形成。发射的THZ辐射的比对可以通过施加单向外部磁场来影响。我们证明了如何通过使用次要环将模式取消模式并使用相位敏感的THZ辐射检测来形成相反的对齐和不同形状除以域壁的不同形状。为了进行分析,将数据与KERR显微镜图像进行比较。将这种方法与THZ范围磁性纹理范围的光谱信息相结合的可能性或与Spintronic Emitter直接相邻的抗铁磁体的信息,使得这种检测方法有趣,对于探测超出ABBE衍射极限的高分辨率激发的大量更广泛的应用程序,该应用程序限制了较高的分辨率,从而限制了Laser激发区域的限制。
In our study, we determine the alignment of magnetic domains in a CoFeB layer using THz radiation. We generate THz-pulses by fs-laser-pulses in magnetized CoFeB/Pt heterostructures, based on spin currents. An LT-GaAs Auston switch detects the radiation phase-sensitively and allows to determine the magnetization alignment. Our scanning technique with motorized stages with step sizes in the sub-micrometer range, allows to image two dimensional magnetic structures. Theoretically the resolution is restricted to half of the wavelength if focusing optics in the far-field limit are used. By applying near-field imaging, the spatial resolution is enhanced to the single digit micrometer range. For this purpose, spintronic emitters in diverse geometric shapes, e.g. circles, triangles, squares, and sizes are prepared to observe the formation of magnetization patterns. The alignment of the emitted THz radiation can be influenced by applying unidirectional external magnetic fields. We demonstrate how magnetic domains with opposite alignment and different shapes divided by domain walls are created by demagnetizing the patterns using minor loops and imaged using phase sensitive THz radiation detection. For analysis, the data is compared to Kerr microscope images. The possibility to combine this method with THz range spectroscopic information of magnetic texture or antiferromagnets in direct vicinity to the spintronic emitter, makes this detection method interesting for much wider applications probing THz excitation in spin systems with high resolution beyond the Abbe diffraction limit, limited solely by the laser excitation area.