论文标题
DeepSportradar-V1:用于运动理解的计算机视觉数据集,并具有高质量的注释
DeepSportradar-v1: Computer Vision Dataset for Sports Understanding with High Quality Annotations
论文作者
论文摘要
随着深度学习的最新发展应用于计算机视觉,体育视频理解引起了很多关注,为体育消费者和联赛提供了更丰富的信息。本文介绍了DeepSportradar-V1,这是一套计算机视觉任务,数据集和基准,以了解自动化运动。该框架的主要目的是缩小学术研究与现实世界环境之间的差距。为此,数据集提供了高分辨率的原始图像,相机参数和高质量注释。 DeepSportradar目前支持与篮球有关的四个具有挑战性的任务:BALL 3D定位,摄像头校准,播放器实例细分和播放器重新识别。对于四个任务中的每一个,都提供了数据集,目标,性能指标和提议的基线方法的详细说明。为了鼓励对运动理解的先进方法的进一步研究,竞争是在ACM Multimedia 2022会议上的MMSPorts研讨会的一部分组织的,参与者必须开发最先进的方法来解决上述任务。四个数据集,开发套件和基准都可以公开使用。
With the recent development of Deep Learning applied to Computer Vision, sport video understanding has gained a lot of attention, providing much richer information for both sport consumers and leagues. This paper introduces DeepSportradar-v1, a suite of computer vision tasks, datasets and benchmarks for automated sport understanding. The main purpose of this framework is to close the gap between academic research and real world settings. To this end, the datasets provide high-resolution raw images, camera parameters and high quality annotations. DeepSportradar currently supports four challenging tasks related to basketball: ball 3D localization, camera calibration, player instance segmentation and player re-identification. For each of the four tasks, a detailed description of the dataset, objective, performance metrics, and the proposed baseline method are provided. To encourage further research on advanced methods for sport understanding, a competition is organized as part of the MMSports workshop from the ACM Multimedia 2022 conference, where participants have to develop state-of-the-art methods to solve the above tasks. The four datasets, development kits and baselines are publicly available.