论文标题

从4D卷积和多尺度高斯工艺的光场图像中降雨

Rain Removal from Light Field Images with 4D Convolution and Multi-scale Gaussian Process

论文作者

Yan, Tao, Li, Mingyue, Li, Bin, Yang, Yang, Lau, Rynson W. H.

论文摘要

现有的DERANE方法主要集中在单个输入图像上。但是,只有一个输入图像,很难准确检测并去除雨条,以恢复无雨图像。相比之下,光场图像(LFI)通过通过元素摄像头记录每个事件射线的方向和位置,嵌入了目标场景的丰富3D结构和纹理信息。 LFI在计算机视觉和图形社区中变得越来越流行。但是,充分利用LFI可用的丰富信息,例如2D子视图和每个子视图的差异图,以进行有效的降雨仍然是一个具有挑战性的问题。在本文中,我们提出了一种新颖的方法,即4D-MGP-SRRNET,以从LFI中删除雨条。我们的方法将大雨LFI的所有子视图作为输入。为了充分利用LFI,它采用4D卷积层同时处理LFI的所有子视图。在管道中,提出了雨水检测网络MGPDNET,其中提出了一种新型的多尺度自引导高斯工艺(MSGP)模块,以检测来自多范围内输入LFI的所有子视图的高分辨率雨条。为MSGP介绍了半监督学习,以通过计算伪阵地真实的真实世界雨条纹,通过对虚拟世界LFI和真实的LFI进行训练,以通过训练虚拟世界LFI和现实世界中的LFI来准确检测雨条。然后,我们将所有将预测的雨条减少到基于4D卷积的深度估计剩余网络(Dernet)中以估算深度图的所有子视图,以估计深度图,后来将其转换为雾图。最后,所有与相应的雨条和雾图串联的子视图均基于对抗性复发性神经网络的强大雨天LFI恢复模型,以逐步消除雨条并恢复无雨的LFI。

Existing deraining methods focus mainly on a single input image. However, with just a single input image, it is extremely difficult to accurately detect and remove rain streaks, in order to restore a rain-free image. In contrast, a light field image (LFI) embeds abundant 3D structure and texture information of the target scene by recording the direction and position of each incident ray via a plenoptic camera. LFIs are becoming popular in the computer vision and graphics communities. However, making full use of the abundant information available from LFIs, such as 2D array of sub-views and the disparity map of each sub-view, for effective rain removal is still a challenging problem. In this paper, we propose a novel method, 4D-MGP-SRRNet, for rain streak removal from LFIs. Our method takes as input all sub-views of a rainy LFI. To make full use of the LFI, it adopts 4D convolutional layers to simultaneously process all sub-views of the LFI. In the pipeline, the rain detection network, MGPDNet, with a novel Multi-scale Self-guided Gaussian Process (MSGP) module is proposed to detect high-resolution rain streaks from all sub-views of the input LFI at multi-scales. Semi-supervised learning is introduced for MSGP to accurately detect rain streaks by training on both virtual-world rainy LFIs and real-world rainy LFIs at multi-scales via computing pseudo ground truths for real-world rain streaks. We then feed all sub-views subtracting the predicted rain streaks into a 4D convolution-based Depth Estimation Residual Network (DERNet) to estimate the depth maps, which are later converted into fog maps. Finally, all sub-views concatenated with the corresponding rain streaks and fog maps are fed into a powerful rainy LFI restoring model based on the adversarial recurrent neural network to progressively eliminate rain streaks and recover the rain-free LFI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源