论文标题
可扩展的量子神经网络用于分类
Scalable Quantum Neural Networks for Classification
论文作者
论文摘要
许多最近的机器学习任务逐步使用量子计算,以利用量子力学(称为量子机器学习(QML))来提高分类精度和训练效率。差异量子电路(VQC)经常用于构建量子神经网络(QNN),该网络与常规神经网络相对。但是,由于硬件限制,当前的量子设备仅允许使用量子数量很少来表示数据并执行简单的量子计算。单个量子设备上的有限量子资源会降低数据使用情况并限制量子电路的规模,从而在一定程度上阻止了量子优势。为了减轻这种约束,我们提出了一种通过合作利用多个小型量子设备的量子资源来实现可扩展量子神经网络(SQNN)的方法。在SQNN系统中,几个量子设备用作量子特征提取器,并并行从输入实例中提取本地特征,而量子设备则用作量子预测指标,对通过经典通信渠道收集的本地特征进行预测。 SQNN系统中的量子特征提取器彼此独立,因此可以灵活地使用不同尺寸的量子设备,更大的量子设备提取了更多的本地特征。特别是,可以以模块化方式在单个量子设备上执行SQNN。我们的工作是探索性的,并使用Tensorflow量子库在量子系统模拟器上进行。评估对MNIST数据集进行了二进制分类。它表明,SQNN模型与同一量表的常规QNN模型达到了可比的分类精度。此外,它表明具有更多量子资源的SQNN模型可以显着提高分类精度。
Many recent machine learning tasks resort to quantum computing to improve classification accuracy and training efficiency by taking advantage of quantum mechanics, known as quantum machine learning (QML). The variational quantum circuit (VQC) is frequently utilized to build a quantum neural network (QNN), which is a counterpart to the conventional neural network. Due to hardware limitations, however, current quantum devices only allow one to use few qubits to represent data and perform simple quantum computations. The limited quantum resource on a single quantum device degrades the data usage and limits the scale of the quantum circuits, preventing quantum advantage to some extent. To alleviate this constraint, we propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively. In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor, performing prediction over the local features collected through classical communication channels. The quantum feature extractors in the SQNN system are independent of each other, so one can flexibly use quantum devices of varying sizes, with larger quantum devices extracting more local features. Especially, the SQNN can be performed on a single quantum device in a modular fashion. Our work is exploratory and carried out on a quantum system simulator using the TensorFlow Quantum library. The evaluation conducts a binary classification on the MNIST dataset. It shows that the SQNN model achieves a comparable classification accuracy to a regular QNN model of the same scale. Furthermore, it demonstrates that the SQNN model with more quantum resources can significantly improve classification accuracy.