论文标题
在限制下的不可分割商品的随机分配
Random Assignment of Indivisible Goods under Constraints
论文作者
论文摘要
我们研究了不可分割的商品的随机分配问题,其中每个代理都有序数偏好和约束。我们的目标是表征始终存在的随机分配的条件,同时满足效率和嫉妒。概率的序列机制可确保存在这种分配的无约束设置。在本文中,我们考虑了一个更通用的环境,在该设置中,只有当该集合满足她的可行性约束时,每个代理才能消耗一组项目。必须在学生课程安置,员工班次任务等中考虑这些限制。我们证明,即使对于对项目进行分类的简单情况,每个代理都要求每个类别中的一个项目,即使对于分区矩阵约束的简单情况,也不存在有效且无嫉妒的分配。然后,我们确定始终存在有效且无效的作业的特殊情况。对于这些情况,概率系列不能自然扩展。因此,我们提供了使用各种方法找到所需分配的机制。
We investigate the problem of random assignment of indivisible goods, in which each agent has an ordinal preference and a constraint. Our goal is to characterize the conditions under which there always exists a random assignment that simultaneously satisfies efficiency and envy-freeness. The probabilistic serial mechanism ensures the existence of such an assignment for the unconstrained setting. In this paper, we consider a more general setting in which each agent can consume a set of items only if the set satisfies her feasibility constraint. Such constraints must be taken into account in student course placements, employee shift assignments, and so on. We demonstrate that an efficient and envy-free assignment may not exist even for the simple case of partition matroid constraints, where the items are categorized, and each agent demands one item from each category. We then identify special cases in which an efficient and envy-free assignment always exists. For these cases, the probabilistic serial cannot be naturally extended; therefore, we provide mechanisms to find the desired assignment using various approaches.