论文标题

- $ d $选择在次级惠特政权中负载平衡

Power-of-$d$ Choices Load Balancing in the Sub-Halfin Whitt Regime

论文作者

Varma, Sushil Mahavir, Castro, Francisco, Maguluri, Siva Theja

论文摘要

我们考虑在泊松到达,指数服务和均质服务器下的负载平衡系统。到达后,应将工作路由到其中一台服务器,在该服务器中排队直到服务。我们考虑使用的功率$ D $选择路由算法,该算法在随机采样的队列中选择了最小长度的队列。我们在许多服务器的重型交通状态中研究了该系统,当负载接近容量时,服务器数量同时进入无穷大。特别是,我们考虑了一系列具有$ n $服务器的系统,到达率由$λ= n-n-n^{1-γ} $给出,对于某些$γ\ in(0,0.5)$,称为sub-halfin-whitt制度。 [liu ying(2020)]表明,在$ d $ d $选择的情况下,以$ d \ geq n^γ\ log n $路由,排队长度的行为与JSQ的行为相似,并且有渐近的零排队延迟。 本文的重点是在$ d $低于此阈值时表征行为。我们在队列长度上获得了$ d $和足够大的$ n $的高概率范围。特别是,我们表明,当$ d $在$ n $上生长时,但比[liu ying(2020)]的慢,即,如果$ d $是$θ\ left((((n^γ\ log n)^{1/m} {1/m} {1/m})\ right)$对于某些integer $ m> 1 $ $ m> $ $ m $ $ m $ $ m $ m $ m $ m是$ m $。此外,如果$ d $以$ n $的形式生长,即比任何多项式慢,但至少是$ω(\ log(n)^3)$,则队列长度会渐近地吹到无限。我们通过使用迭代状态崩溃方法获得这些结果。我们首先在队列长度上建立弱状态空间崩溃(SSC)。然后,我们在弱的SSC上引导其迭代地缩小塌陷区域。经过足够的步骤,这种归纳精制提供了我们寻求的界限。我们使用Lyapunov漂移参数建立了这些崩溃序列。

We consider the load balancing system under Poisson arrivals, exponential services, and homogeneous servers. Upon arrival, a job is to be routed to one of the servers, where it is queued until service. We consider the Power-of-$d$ choices routing algorithm, which chooses the queue with minimum length among $d$ randomly sampled queues. We study this system in the many-server heavy-traffic regime where the number of servers goes to infinity simultaneously when the load approaches the capacity. In particular, we consider a sequence of systems with $n$ servers and the arrival rate is given by $λ=n-n^{1-γ}$ for some $γ\in (0, 0.5)$, known as the sub-Halfin-Whitt regime. It was shown by [Liu Ying (2020)] that under Power-of-$d$ choices routing with $d \geq n^γ\log n$, the queue length behaves similarly to that of JSQ and that there are asymptotically zero queueing delays. The focus of this paper is to characterize the behavior when $d$ is below this threshold. We obtain high probability bounds on the queue lengths for various values of $d$ and large enough $n$. In particular, we show that when $d$ grows polynomially in $n$ but slower than in [Liu Ying (2020)], i.e., if $d$ is $Θ\left((n^γ\log n)^{1/m})\right)$ for some integer $m>1$, then the asymptotic queue length is $m$ with high probability. Moreover, if $d$ grows polylog in $n$, i.e., slower than any polynomial, but is at least $Ω(\log (n)^3)$, the queue length blows up to infinity asymptotically. We obtain these results by using an iterative state space collapse approach. We first establish a weak state-space collapse (SSC) on the queue lengths. Then, we bootstrap on weak SSC to iteratively narrow down the region of the collapse. After enough steps, this inductive refinement provides the bounds we seek. We establish these sequences of collapse using Lyapunov drift arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源