论文标题

RJ曲线:一种改进的方法来客观地对结构进行分类

RJ-plots: An improved method to classify structures objectively

论文作者

Clarke, Seamus D., Jaffa, Sarah E., Whitworth, Anthony P.

论文摘要

星际介质是高度结构化的,在空间尺度上呈现一系列形态。研究这些层次结构的观察性调查和最先进的模拟产生的大数据集意味着必须以自动化的方式进行识别和分类以提高效率。在这里,我们提出了RJ-plot,这是Jaffa等人开发的自动形态分类技术的改进版本。 (2018)。该方法允许在准圆形/细长结构和集中/低密度的结构之间进行明显区分。我们使用了Neralwar等人最近的形态学塞格主义目录。 (2022)显示了由RJ图产生的分类的改进,尤其是对于环状和集中的云类型。我们还发现结构的中心浓度与其恒星形成效率和密集的气体分数之间存在很强的相关性,以及与伸长率缺乏相关性。此外,我们还使用了Clarke等人的积聚丝模拟。 (2020年)要突出显示RJ图的多尺度应用,发现尽管球形结构在较小的尺度上变得越来越普遍,但它们从来都不是主要的结构,降低到$ r \ sim0.03 $ pc。

The interstellar medium is highly structured, presenting a range of morphologies across spatial scales. The large data sets resulting from observational surveys and state-of-the-art simulations studying these hierarchical structures means that identification and classification must be done in an automated fashion to be efficient. Here we present RJ-plots, an improved version of the automated morphological classification technique J-plots developed by Jaffa et al. (2018). This method allows clear distinctions between quasi-circular/elongated structures and centrally over/under-dense structures. We use the recent morphological SEDIGISM catalogue of Neralwar et al. (2022) to show the improvement in classification resulting from RJ-plots, especially for ring-like and concentrated cloud types. We also find a strong correlation between the central concentration of a structure and its star formation efficiency and dense gas fraction, as well as a lack of correlation with elongation. Furthermore, we use the accreting filament simulations of Clarke et al. (2020) to highlight a multi-scale application of RJ-plots, finding that while spherical structures become more common at smaller scales they are never the dominant structure down to $r\sim0.03$ pc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源