论文标题

探索与氢化物分子的键解离的变异量子本质量限制的限制

Exploring the scaling limitations of the variational quantum eigensolver with the bond dissociation of hydride diatomic molecules

论文作者

Clary, Jacob M., Jones, Eric B., Vigil-Fowler, Derek, Chang, Christopher, Graf, Peter

论文摘要

涉及强烈相关电子的材料模拟对最先进的电子结构方法提出了基本挑战,但被认为是量子计算的理想用例。迄今为止,尽管量子量子量化算法(VQE)算法可以预测化学精确的总能量,但尚无量子计算机模拟与现实世界应用相关的大小和复杂性的分子。然而,由于中等大小,强相关的系统(例如分子催化剂)的许多应用,因此,成功使用VQE是迈向近期量子处理器有用的化学建模的重要路点。在本文中,我们朝这个方向迈出了重要的一步。我们将步骤,写入并运行(模拟)量子计算机的平行代码,以计算使用VQE的TIH,LIH,NAH和KH双原子氢化物分子的键离解离曲线。 TIH被选为相对简单的化学系统,该化学系统结合了D轨道和强电子相关性。由于当前对现有量子硬件的VQE实现受量子错误率的限制,可用的Qubits数量以及允许的栅极深度,因此最近的研究集中在涉及S和P块元素的化学系统上。通过TIH的VQE + UCCSD计算,我们评估了在实际量子硬件上使用D轨道对分子进行建模的近期可行性。我们证明了d-orbitals的包含和UCCSD ANSATZ的使用,这两者都是捕获正确的TIH物理学所必需的,并大大增加了此问题的成本。我们估计使用VQE+UCCSD对当前量子计算硬件进行建模所需的近似错误率,并表明它们可能是令人望而却步的,直到可用的硬件和误差校正算法可显着改善。

Materials simulations involving strongly correlated electrons pose fundamental challenges to state-of-the-art electronic structure methods but are hypothesized to be the ideal use case for quantum computing. To date, no quantum computer has simulated a molecule of a size and complexity relevant to real-world applications, despite the fact that the variational quantum eigensolver (VQE) algorithm can predict chemically accurate total energies. Nevertheless, because of the many applications of moderately-sized, strongly correlated systems, such as molecular catalysts, the successful use of the VQE stands as an important waypoint in the advancement toward useful chemical modeling on near-term quantum processors. In this paper, we take a significant step in this direction. We lay out the steps, write, and run parallel code for an (emulated) quantum computer to compute the bond dissociation curves of the TiH, LiH, NaH, and KH diatomic hydride molecules using VQE. TiH was chosen as a relatively simple chemical system that incorporates d orbitals and strong electron correlation. Because current VQE implementations on existing quantum hardware are limited by qubit error rates, the number of qubits available, and the allowable gate depth, recent studies have focused on chemical systems involving s and p block elements. Through VQE + UCCSD calculations of TiH, we evaluate the near-term feasibility of modeling a molecule with d-orbitals on real quantum hardware. We demonstrate that the inclusion of d-orbitals and the use of the UCCSD ansatz, which are both necessary to capture the correct TiH physics, dramatically increase the cost of this problem. We estimate the approximate error rates necessary to model TiH on current quantum computing hardware using VQE+UCCSD and show them to likely be prohibitive until significant improvements in hardware and error correction algorithms are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源