论文标题

SOLBP:二阶环路信念传播,用于不确定的贝叶斯网络中的推断

SOLBP: Second-Order Loopy Belief Propagation for Inference in Uncertain Bayesian Networks

论文作者

Hougen, Conrad D., Kaplan, Lance M., Ivanovska, Magdalena, Cerutti, Federico, Mishra, Kumar Vijay, Hero III, Alfred O.

论文摘要

在二阶不确定的贝叶斯网络中,条件概率仅在分布中已知,即概率上的概率。 Delta方法已应用于扩展确切的一阶推理方法,以通过从贝叶斯网络得出的总和 - 产品网络来传播均值和方差,从而表征了认知不确定性或模型本身的不确定性。另外,已经证明了Polytrees的二阶信仰传播,但没有用于一般的定向无环形结构。在这项工作中,我们将循环信念传播扩展到二阶贝叶斯网络的设置,从而产生二阶循环信念传播(SOLBP)。对于二阶贝叶斯网络,SOLBP生成了与Sum-Propoduct网络生成的推论,同时更有效且可扩展。

In second-order uncertain Bayesian networks, the conditional probabilities are only known within distributions, i.e., probabilities over probabilities. The delta-method has been applied to extend exact first-order inference methods to propagate both means and variances through sum-product networks derived from Bayesian networks, thereby characterizing epistemic uncertainty, or the uncertainty in the model itself. Alternatively, second-order belief propagation has been demonstrated for polytrees but not for general directed acyclic graph structures. In this work, we extend Loopy Belief Propagation to the setting of second-order Bayesian networks, giving rise to Second-Order Loopy Belief Propagation (SOLBP). For second-order Bayesian networks, SOLBP generates inferences consistent with those generated by sum-product networks, while being more computationally efficient and scalable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源