论文标题

基于跨宣传行动对象统计的行动识别

Action Recognition based on Cross-Situational Action-object Statistics

论文作者

Tsutsui, Satoshi, Wang, Xizi, Weng, Guangyuan, Zhang, Yayun, Crandall, David, Yu, Chen

论文摘要

通常对视觉动作识别的机器学习模型进行了对与某些对象相关联的特定情况的数据训练和测试。这是一个悬而未决的问题,训练集中的行动对象关联如何影响模型超出训练情况以外的概括能力。我们着手确定培训数据的属性,这些训练数据可导致具有更大泛化能力的行动识别模型。为此,我们从一种称为跨词语学习的认知机制中汲取灵感,该机制指出,人类学习者通过在不同情况下观察相同概念的实例来提取概念的含义。我们对各种类型的动作对象关联进行受控实验,并在训练数据中识别动作对象共发生的关键特性,从而导致更好的分类器。鉴于数据集中缺少这些属性,这些属性通常用于培训计算机视觉文献中的动作分类器,因此我们的工作提供了有关如何最好地构造数据集以有效培训以进行更好概括的有用见解。

Machine learning models of visual action recognition are typically trained and tested on data from specific situations where actions are associated with certain objects. It is an open question how action-object associations in the training set influence a model's ability to generalize beyond trained situations. We set out to identify properties of training data that lead to action recognition models with greater generalization ability. To do this, we take inspiration from a cognitive mechanism called cross-situational learning, which states that human learners extract the meaning of concepts by observing instances of the same concept across different situations. We perform controlled experiments with various types of action-object associations, and identify key properties of action-object co-occurrence in training data that lead to better classifiers. Given that these properties are missing in the datasets that are typically used to train action classifiers in the computer vision literature, our work provides useful insights on how we should best construct datasets for efficiently training for better generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源