论文标题

动态任务软件缓存的辅助计算卸载用于多访问边缘计算

Dynamic Task Software Caching-assisted Computation Offloading for Multi-Access Edge Computing

论文作者

Chen, Zhixiong, Yi, Wenqiang, Alam, Atm S., Nallanathan, Arumugam

论文摘要

在多访问边缘计算(MEC)中,大多数现有的任务软件缓存工作重点是网络边缘的静态缓存数据,由于实践中时间变化的用户请求,这可能无法保持高可重复性。为此,这项工作考虑了MEC服务器上的动态任务软件缓存,以帮助用户的任务执行。具体而言,我们制定了联合任务软件缓存更新(TSCU)和计算卸载(COMO)问题,以最大程度地减少用户的能耗,同时保证MEC服务器的高速缓存大小和计算能力,以及用户的时间变化任务需求。事实证明,这个问题是非确定性的多项式时间,因此我们根据它们的时间相关性,即实时COMO问题和基于Markov决策过程的TSCU问题,将其转换为两个子问题。我们首先将COMO问题建模为多用户游戏,并提出一种分散的算法来解决其NASH平衡解决方案。然后,我们提出了一种基于双重Q-NETWORK(DDQN)的方法来解决TSCU策略。为了减少计算复杂性和收敛时间,我们为DDQN中的深神经网络(DNN)提供了新的设计,称为状态编码和动作汇总(SCAA)。在SCAA-DNN中,我们在输入层中引入了一个辍学机制,以编码用户的活动状态。此外,在输出层,我们将两层体系结构设计为动态汇总的缓存操作,该操作能够解决巨大的状态行动空间问题。仿真结果表明,所提出的解决方案的表现优于现有方案,节省了超过12%的能量,并以更少的训练发作收敛。

In multi-access edge computing (MEC), most existing task software caching works focus on statically caching data at the network edge, which may hardly preserve high reusability due to the time-varying user requests in practice. To this end, this work considers dynamic task software caching at the MEC server to assist users' task execution. Specifically, we formulate a joint task software caching update (TSCU) and computation offloading (COMO) problem to minimize users' energy consumption while guaranteeing delay constraints, where the limited cache size and computation capability of the MEC server, as well as the time-varying task demand of users are investigated. This problem is proved to be non-deterministic polynomial-time hard, so we transform it into two sub-problems according to their temporal correlations, i.e., the real-time COMO problem and the Markov decision process-based TSCU problem. We first model the COMO problem as a multi-user game and propose a decentralized algorithm to address its Nash equilibrium solution. We then propose a double deep Q-network (DDQN)-based method to solve the TSCU policy. To reduce the computation complexity and convergence time, we provide a new design for the deep neural network (DNN) in DDQN, named state coding and action aggregation (SCAA). In SCAA-DNN, we introduce a dropout mechanism in the input layer to code users' activity states. Additionally, at the output layer, we devise a two-layer architecture to dynamically aggregate caching actions, which is able to solve the huge state-action space problem. Simulation results show that the proposed solution outperforms existing schemes, saving over 12% energy, and converges with fewer training episodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源