论文标题

用于空间关系提取的分类和生成的混合模型

A Hybrid Model of Classification and Generation for Spatial Relation Extraction

论文作者

Li, Feng Wang Peifeng, Zhu, Qiaoming

论文摘要

从文本中提取空间关系是自然语言理解的一项基本任务,以前的研究仅将其视为一项分类任务,由于信息差而忽略了那些具有无效角色的空间关系。为了解决上述问题,我们首先将空间关系提取视为一项生成任务,并为此任务提出了一种新型的混合模型HMCGR。 HMCGR包含一个生成和分类模型,而前者可以生成那些无效的关系,后者可以提取那些非无效关系以相互补充。此外,使用反射性评估机制,以进一步提高基于空间关系的反射性原理的准确性。 SpaceEval的实验结果表明,HMCGR的表现明显优于SOTA基线。

Extracting spatial relations from texts is a fundamental task for natural language understanding and previous studies only regard it as a classification task, ignoring those spatial relations with null roles due to their poor information. To address the above issue, we first view spatial relation extraction as a generation task and propose a novel hybrid model HMCGR for this task. HMCGR contains a generation and a classification model, while the former can generate those null-role relations and the latter can extract those non-null-role relations to complement each other. Moreover, a reflexivity evaluation mechanism is applied to further improve the accuracy based on the reflexivity principle of spatial relation. Experimental results on SpaceEval show that HMCGR outperforms the SOTA baselines significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源