论文标题

使用持续同源性的无障碍的实力布局

Untangling Force-Directed Layouts Using Persistent Homology

论文作者

Doppalapudi, Bhavana, Wang, Bei, Rosen, Paul

论文摘要

强制定向的布局属于一种流行的方法,用于在节点链接图中定位节点。但是,他们通常缺乏对全球结构的直接考虑,这可能导致视觉混乱和无关结构的重叠。在本文中,我们使用持续同源性的原理来解开强力指导的布局,从而减轻这些问题。首先,我们设计了一种使用0维持续同源性来有效生成初始图形布局的新方法。该方法可导致更快的收敛性和质量更好的图形布局。其次,我们为图形上的一维持续同源性特征(即隧道/周期)提供了一种新的定义和有效的算法。我们为用户提供了通过突出显示并在布局中添加循环力来与一维功能进行交互的能力。最后,我们通过计算各种指标,例如共同级别,边缘交叉等来评估32个合成和现实图表的方法,以证明我们提出的方法的功效。

Force-directed layouts belong to a popular class of methods used to position nodes in a node-link diagram. However, they typically lack direct consideration of global structures, which can result in visual clutter and the overlap of unrelated structures. In this paper, we use the principles of persistent homology to untangle force-directed layouts thus mitigating these issues. First, we devise a new method to use 0-dimensional persistent homology to efficiently generate an initial graph layout. The approach results in faster convergence and better quality graph layouts. Second, we provide a new definition and an efficient algorithm for 1-dimensional persistent homology features (i.e., tunnels/cycles) on graphs. We provide users the ability to interact with the 1-dimensional features by highlighting them and adding cycle-emphasizing forces to the layout. Finally, we evaluate our approach with 32 synthetic and real-world graphs by computing various metrics, e.g., co-ranking, edge crossing, etc., to demonstrate the efficacy of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源