论文标题
在协变量诱导的依赖左截断下的双重稳定估计
Doubly Robust Estimation under Covariate-Induced Dependent Left Truncation
论文作者
论文摘要
在随访的普遍队列研究中,事件的时间结果可能会导致左截断,从而导致选择偏差。为了估计事件时间的分布,调整左截断的常规方法往往依赖于(准)独立性假设,即截断时间和事件时间在观察到的区域“独立”。当截断时间与可能由测量的协变量引起的事件时间之间存在依赖性时,就会违反此假设。在这种情况下,可以使用截断权加权的反截断概率,但对截断模型的错误指定敏感。在这项工作中,我们将半参数理论应用于在协变量诱导的依赖性左截断的情况下找到预期(任意转化)生存时间的有效影响曲线。然后,我们使用它来构建显示享有双运动特性的估计器。我们的工作代表了在存在左截断的情况下构造双重稳健估计器的首次尝试,这并不属于开发双重强大方法的既定数据框架。我们为文献中似乎未经过仔细检查的渐近性质提供技术条件,以获取事实数据的数据,并通过广泛的模拟来研究估计器。我们将估计器应用于实践中的两个数据集,具有不同的右审查模式。
In prevalent cohort studies with follow-up, the time-to-event outcome is subject to left truncation leading to selection bias. For estimation of the distribution of time-to-event, conventional methods adjusting for left truncation tend to rely on the (quasi-)independence assumption that the truncation time and the event time are "independent" on the observed region. This assumption is violated when there is dependence between the truncation time and the event time possibly induced by measured covariates. Inverse probability of truncation weighting leveraging covariate information can be used in this case, but it is sensitive to misspecification of the truncation model. In this work, we apply the semiparametric theory to find the efficient influence curve of an expected (arbitrarily transformed) survival time in the presence of covariate-induced dependent left truncation. We then use it to construct estimators that are shown to enjoy double-robustness properties. Our work represents the first attempt to construct doubly robust estimators in the presence of left truncation, which does not fall under the established framework of coarsened data where doubly robust approaches are developed. We provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data, and study the estimators via extensive simulation. We apply the estimators to two data sets from practice, with different right-censoring patterns.