论文标题
较高同质组的元素无法通过多面体近似值检测到
Elements of higher homotopy groups undetectable by polyhedral approximation
论文作者
论文摘要
当拓扑空间$ x $中存在非平凡的本地结构时,一种表征$ n $ th同型同型同构类型的一种常见方法是$π_n(x,x_0)$的图像,是考虑$π_n(x,x_0)$ of $ n $ n $ n $ n $ - th的同型$ homom \ homom \ checkon $ \ checkon(x_0) $ψ_{n}:π_n(x,x_0)\ to \checkπ_n(x,x_0)$。子组$ \ ker(ψ_n)$是这种策略的阻塞,因为它由$π_n(x,x_0)$的元素组成,而多面体近似值至$ x $。在本文中,我们使用Spanier组的较高维度类似物来表征$ \ ker(ψ_n)$。特别是,我们证明,如果$ x $是paracompact,hausdorff和$ lc^{n-1} $,则$ \ ker(ψ_n)$等于$ n $ th $ th $ x $ x $。我们还利用更高的班级组的角度来概括Kozlowski-Segal的定理,该定理提供了条件,以确保$ψ_{n} $是同构的。
When non-trivial local structures are present in a topological space $X$, a common approach to characterizing the isomorphism type of the $n$-th homotopy group $π_n(X,x_0)$ is to consider the image of $π_n(X,x_0)$ in the $n$-th Čech homotopy group $\checkπ_n(X,x_0)$ under the canonical homomorphism $Ψ_{n}:π_n(X,x_0)\to \checkπ_n(X,x_0)$. The subgroup $\ker(Ψ_n)$ is the obstruction to this tactic as it consists of precisely those elements of $π_n(X,x_0)$, which cannot be detected by polyhedral approximations to $X$. In this paper, we use higher dimensional analogues of Spanier groups to characterize $\ker(Ψ_n)$. In particular, we prove that if $X$ is paracompact, Hausdorff, and $LC^{n-1}$, then $\ker(Ψ_n)$ is equal to the $n$-th Spanier group of $X$. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that $Ψ_{n}$ is an isomorphism.