论文标题
总结世界形式主义中的feynman图
Summing Feynman diagrams in the worldline formalism
论文作者
论文摘要
全球形式主义与弦理论共享该属性,它允许人们写下大师积分,从而有效地结合了许多Feynman图的贡献。尽管在一环级别上,这些图仅因沿固定线或环的外部腿的位置而有所不同,而在多旋转处,它们通常涉及不同的拓扑。在这里,我们总结了多年来以计算有意义的方式利用这一属性的各种努力。作为第一个示例,我们展示了如何概括Landau-khalatnikov-fradkin公式,以通过QED中的Fermion Expagator的非扰动仪表转换为一般$ 2N $ - $ 2N $ - 点的point case,这是通过路径综合级别的纯操作。在参数综合级别,我们展示了如何在低能扩张中整合单个光子,然后勾勒出最近引入的一般框架,用于对这种世界线积分进行分析评估,这些框架涉及圆圈上的量子力学以及反衍生物和伯诺利逆元素之间的关系。
The worldline formalism shares with string theory the property that it allows one to write down master integrals that effectively combine the contributions of many Feynman diagrams. While at the one-loop level these diagrams differ only by the position of the external legs along a fixed line or loop, at multiloop they generally involve different topologies. Here we summarize various efforts that have been made over the years to exploit this property in a computationally meaningful way. As a first example, we show how to generalize the Landau-Khalatnikov-Fradkin formula for the non-perturbative gauge transformation of the fermion propagator in QED to the general $2n$ - point case by pure manipulations at the path-integral level. At the parameter-integral level, we show how to integrate out individual photons in the low-energy expansion, and then sketch a recently introduced general framework for the analytical evaluation of such worldline integrals involving a reduction to quantum mechanics on the circle and the relation between inverse derivatives and Bernoulli polynomials.