论文标题
使用冲击声音的机器人检查和表征在混凝土结构上的地下缺陷的表征
Robotic Inspection and Characterization of Subsurface Defects on Concrete Structures Using Impact Sounding
论文作者
论文摘要
撞击(IS)和Impact-Echo(IE)是发达的非破坏性评估(NDE)方法,这些方法被广泛用于检查混凝土结构以确保安全性和可持续性。但是,这是一项繁琐的工作,沿网格线沿着网格线的数据进行收集,涵盖了较大的目标区域,以表征地下缺陷。另一方面,数据处理非常复杂,需要域专家来解释结果。为了解决上述问题,我们提出了一个新型的机器人检查系统,称为Impact-Rover,以自动化数据收集过程并引入数据分析软件以可视化检查结果,从而使常规的非专业人士可以理解。该系统由三个模块组成:1)一个机器人平台,具有垂直移动性的IS和IE数据,在难以到达的位置,2)基于视觉的定位模块,该模块融合了RGB-D摄像头,IMU和车轮编码器,以估算机器人的6多种姿势,3)一个数据分析软件模块,用于处理IS数据以生成Defect defect MAPS MAPS。 Inkate-Rover托有IE和是滑动机构上的设备,可以执行移动样本操作以在可调间距时收集多个IS和IE数据。该机器人的样品比手动数据收集方法快得多,因为它会自动沿直线进行多个测量值并记录位置。本文着重于报告实验结果。我们计算特征,并使用无监督的学习方法来分析数据。通过将基于视力的本地化模块和滑动机制头部位置产生的姿势结合在一起,我们可以生成可能的缺陷图。混凝土板上的结果表明,我们听起来像是影响的系统可以有效揭示浅缺陷。
Impact-sounding (IS) and impact-echo (IE) are well-developed non-destructive evaluation (NDE) methods that are widely used for inspections of concrete structures to ensure the safety and sustainability. However, it is a tedious work to collect IS and IE data along grid lines covering a large target area for characterization of subsurface defects. On the other hand, data processing is very complicated that requires domain experts to interpret the results. To address the above problems, we present a novel robotic inspection system named as Impact-Rover to automate the data collection process and introduce data analytics software to visualize the inspection result allowing regular non-professional people to understand. The system consists of three modules: 1) a robotic platform with vertical mobility to collect IS and IE data in hard-to-reach locations, 2) vision-based positioning module that fuses the RGB-D camera, IMU and wheel encoder to estimate the 6-DOF pose of the robot, 3) a data analytics software module for processing the IS data to generate defect maps. The Impact-Rover hosts both IE and IS devices on a sliding mechanism and can perform move-stop-sample operations to collect multiple IS and IE data at adjustable spacing. The robot takes samples much faster than the manual data collection method because it automatically takes the multiple measurements along a straight line and records the locations. This paper focuses on reporting experimental results on IS. We calculate features and use unsupervised learning methods for analyzing the data. By combining the pose generated by our vision-based localization module and the position of the head of the sliding mechanism we can generate maps of possible defects. The results on concrete slabs demonstrate that our impact-sounding system can effectively reveal shallow defects.