论文标题
高级估值的几何形状
Geometry of higher rank valuations
论文作者
论文摘要
本文的目的是介绍一定数量的工具和结果,适合研究代数品种功能领域较高等级的估值。这将基于对词典有序的r^k组中值的高级准经济估值的研究。 我们证明了二元定理,它作为双锥体复合物的切线锥以更高等级的准经济估值的几何实现。使用这种二元性,我们将准经济估值作为对热带功能的多方向衍生算子提供了分析描述。 此外,我们考虑了一个热带化的精致概念,我们记住了双重复合物的每个锥体上功率序列的初始术语,并通过表明对双锥复合物的锥体上的任何兼容初始术语收集的任何兼容的初始术语都在数量理论中证明了弱近似定理的热带类似物,这是函数函数函数的精制函数的精制功能。 我们以其欧几里得拓扑结束了价值组的r^k,然后研究了我们称为热带拓扑的高级估值空间的自然拓扑。通过使用近似定理,我们提供了双锥体复合物切线锥上热带拓扑的明确描述。 最后,我们表明双重复合物的切线锥提供了较高等级的非Archimedean几何形状的骨骼概念。也就是说,将图片概括为排名第一至较高等级,我们将回缩图构建为双锥体复合物的切线锥,并使用它们来获得极限公式,在这些公式中,我们将更高等级的非Archimedian空间重建其热带拓扑,作为其较高等级骨骼的投影限制。 我们猜想这些较高的骨骼为研究牛顿 - 科恩科夫体的变化提供了适当的基础。
The aim of this paper is to introduce a certain number of tools and results suitable for the study of valuations of higher rank on function fields of algebraic varieties. This will be based on a study of higher rank quasi-monomial valuations taking values in the lexicographically ordered group R^k. We prove a duality theorem that gives a geometric realization of higher rank quasi-monomial valuations as tangent cones of dual cone complexes. Using this duality, we provide an analytic description of quasi-monomial valuations as multi-directional derivative operators on tropical functions. We consider moreover a refined notion of tropicalization in which we remember the initial terms of power series on each cone of a dual complex, and prove a tropical analogue of the weak approximation theorem in number theory by showing that any compatible collection of initial terms on cones of a dual cone complex is the refined tropicalization of a rational function in the function field of the variety. Endowing the value group R^k with its Euclidean topology, we study then a natural topology on spaces of higher rank valuations that we call the tropical topology. By using the approximation theorem we provide an explicit description of the tropical topology on tangent cones of dual cone complexes. Finally, we show that tangent cones of dual complexes provide a notion of skeleton in higher rank non-archimedean geometry. That is, generalizing the picture in rank one to higher rank, we construct retraction maps to tangent cones of dual cone complexes, and use them to obtain limit formulae in which we reconstruct higher rank non-archimedian spaces with their tropical topology as the projective limit of their higher rank skeleta. We conjecture that these higher rank skeleta provide appropriate bases for the study of variations of Newton-Okounkov bodies.