论文标题
稀疏旅行需求预测的不确定性定量通过时空图神经网络进行预测
Uncertainty Quantification of Sparse Travel Demand Prediction with Spatial-Temporal Graph Neural Networks
论文作者
论文摘要
原产地目的地(O-D)旅行需求预测是运输中的基本挑战。最近,时空深度学习模型展示了提高预测准确性的巨大潜力。但是,很少有研究能够解决细粒O-D矩阵中的不确定性和稀疏问题。这提出了一个严重的问题,因为大量零偏离了确定性深度学习模型的基础的高斯假设。为了解决这个问题,我们设计了一个空间零膨胀的负二项式神经网络(Stzinb-gnn),以量化稀疏旅行需求的不确定性。它使用扩散和时间卷积网络分析了空间和时间相关性,然后将其融合以参数化行进需求的概率分布。使用两个具有各种空间和时间分辨率的现实世界数据集对Stzinb-GNN进行了检查。结果表明,由于其高精度,紧密的置信区间和可解释的参数,尤其是在高时空分辨率下,Stzinb-GNN比基准模型的优越性。 STZINB-GNN的稀疏参数对各种运输应用具有物理解释。
Origin-Destination (O-D) travel demand prediction is a fundamental challenge in transportation. Recently, spatial-temporal deep learning models demonstrate the tremendous potential to enhance prediction accuracy. However, few studies tackled the uncertainty and sparsity issues in fine-grained O-D matrices. This presents a serious problem, because a vast number of zeros deviate from the Gaussian assumption underlying the deterministic deep learning models. To address this issue, we design a Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) to quantify the uncertainty of the sparse travel demand. It analyzes spatial and temporal correlations using diffusion and temporal convolution networks, which are then fused to parameterize the probabilistic distributions of travel demand. The STZINB-GNN is examined using two real-world datasets with various spatial and temporal resolutions. The results demonstrate the superiority of STZINB-GNN over benchmark models, especially under high spatial-temporal resolutions, because of its high accuracy, tight confidence intervals, and interpretable parameters. The sparsity parameter of the STZINB-GNN has physical interpretation for various transportation applications.